
Grant Number NAG80093 (, ?J- L~L? -- 72-
e-,

/Y /Z26,37 [

A DIRECT-EXECUTION PARALLEL
ARCHITECTURE FOR THE
ADVANCED CONTINUOUS

SIMULATION LANGUAGE (ACSL)
9) A DIRECT-EXECUTION Naa - 2 260 2
TECTUEE FOR THE ADVANCED
ULATION LANGUAGE (ACSL)

CSCL 09B U n c l a s
G3/62 0141226
by

Chester C. Carroll
Cudworth Professor of Computer Architecture

Department of Electrical Engineering
College of Engineering

The University of Alabama
Tuscaloosa, Alabama

and

Jeffrey E. Owen
Graduate Research Assistant

I

Prepared for

National Aeronautics and Space Administration

Bureau of Engineering Research
The University of Alabama

May 1988

BER Report No. 424-17

THE UNIVERSITY OF ALABAMA
COLLEGE OF ENGINEERIPG

. A *

The College of Engineering at The University of Alabama has an undergraduate enroll-
ment of more than 2,300 students and a graduate enrollment exceeding 180. There are
approximately 100 faculty members, a significant number of whom conduct research in
addition to teaching.

Research is an integral part of the educational program, and research interests of the
faculty parallel academic specialities. A wide variety of projects are included in the overall
research effort of the College, and these projects form a solid base for the graduate
program which offers fourteen different master’s and five different doctor of philosophy
degrees.

Other organizations on the University campus that contribute to particular research
needs of the College of Engineering are the Charles L. Seebeck Computer Center, Geologi-
cal Survey of Alabama, Marine Environmental Sciences Consortium, Mineral Resources
Institute-State Mine Experiment Station, Mineral Resources Research Institute, Natural
Resources Center, School of Mines and Energy Development, Tuscaloosa Metallurgy
Research Center of the U.S. Bureau of Mines, and the Research Grants Committee.

This University community provides opportunities for interdisciplinary work in pursuit of
the basic goals of teaching, research, and public service.

BUREAU OF ENGINEERING RESEARCH

The Bureau of Engineering Research (BER) is an integral part of the College of Engineer-
ing of The University of Alabama. The primary functions of the BER include: 1) identifying
sources of funds and other outside support bases to encourage and promote the research
and educational activities within the College of Engineering; 2) organizing and promoting
the research interests and accomplishments of the engineering faculty and students;
3) assisting in the preparation, coordination, and execution of proposals, including
research, equipment, and instructional proposals; 4) providing engineering faculty,
students, and staff with services such as graphics and audiovisual support and typing and
editing of proposals and scholarly works; 5) promoting faculty and staff development
through travel and seed project support, incentive stipends, and publicity related to
engineering faculty, students, and programs; 6) developing innovative methods by which
the College of Engineering can increase its effectiveness in providing high quality educa-
tional opportunities for those with whom i t has contact; and 7) providing a source of timely
and accurate data that reflect the variety and depth of contributions made by the faculty,
students, and staff of the College of Engineering to the overall success of the University in
meeting its mission.

Through these activities, the BER serves as a unit dedicated to assisting the College of
Engineering faculty by providing significant and quality service activities.

I

Grant Number NAG8-093

A DIRECT-EXECUTION PARALLEL ARCHITECTURE FOR THE ADVANCED
CONTINUOUS SIMULATION LANGUAGE (ACSL)

Chester C. Carroll
Cudworth Professor of Computer Architecture

and

Jeffrey E. Owen
Graduate Research Assistant

Prepared for

The National Aeronautics and Space Administration

Bureau of Engineering Research
The University of Alabama

May 1988

BER Report No. 424-17

LIST OF ABBREVIATIONS

ACSL

AMD

CISC

CPU

EPROM

FPU

HLL

I / O

MIPS

PE

RAM

RISC

ROM

TI

Advanced Continuous Simulation Language

Advanced Micro Devices

Complex Instruction Set Computer

Central Processing Unit

Erasable Programmable Read Only Memory

Floating Point Unit

High Level Language

Input/Output

Million Instructions Per Second

Processing Element

Random Access Memory

Reduced Instruction Set Computer

Read Only Memory

Texas Instruments

TABLE OF CONTENTS

. ii LIST OF ABBREVIATIONS

. V LIST OF TABLES

LIST OF FIGURES . vi

ABSTRACT . vii

Chapter

. 1 1 . INTRODUCTION

The Advanced Continuous Simulation language. ACSL
A Direct-Execution Architecture
How to Improve the Current ACSL Computer Design
Parallel Processing

2 . PAKALLEL PROCESSING DESIGN CONSIDERATIONS 7

3 .

Fine-Grained or Course-Grained Architecture
Shared Memory or Private Memory
Interconnection Network

REAL-TIME INSTRUCTION EXECUTION WITH ACSL

7
8
9

13

14 Parallelism on the Construct Level
Parallelism on the Program Level 16

19 Allocater Requirements
19 Resource and Construct Allocation
20 Expression Reduction and Factoring

Interprocessor Communication Scheduling 20
Real-Time Data Transfer 21
Program Execution with Direct-Execution Architectures . . 22

. 24 4 PROCESSING ELEMENT CONFIGURATION

Execution Flow in the Processing Element .
CPU .

Microprocessor Survey
AMD 29000
Inmos Transputer
Fairchild Clipper
VLSI S6C010
TI 74AS88XX and AMD 29300
Microprocessor Selection
Understanding the AMD 29000

Microprogram Timing Analysis
An Optimal CPU/FPU
Input/Output Processor

Assumptions used in Analysis

Intelligent versus Nonintelligent 1/0

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Processors .

24
29
29
30
30
31
32
32
33
35
37
38
40
41
41

iii

. Packet Formats
Interprocessor Communication 'rimes

. 5 . ARCHITECTURAL EVALUATION

The Armstrong Cork Benchmark
. Dragster Benchmark

. 6 . DISCUSSION OF RESULTS

Parallel versus Serial Execution
Armstrong Cork Program
Dragster Program

Conclusions .
Appendix

A . DATA FLOW GRAPHS FOR ACSL CONSTRUCTS'
B . MICROPROGRAMMED ROUTINES FOR ACSL CONSTRUCTS

LIST OF REFERENCES .

42
44

46

46
49

55

55
57
57
sa

60

64

129

iv

LIST OF TABLES

Table

. 1 . Categorized ACSL Constructs

2 . Armstrong Cork Benchmark
3 . Comparing 32 Bit RISC Microprocessors
4 . Average Instruction Access Times for Clipper
5 . Microprogram Timing Results
6 . Intracluster Communication Analysis
7 . Armstrong Cork Cluster Activity

. 8 . Dragster Program

9 . Dragster Program Cluster Activity
10 . Comparisons Between Sequential and Parallel

Implementations .

Page

15

17

30

34

37

45

48

50

54

56

V

LIST OF FIGURES

Figure

1 . HLL Computer Architecture Classifications
2 . Current System versus Proposed System
3 . Possible Interconnection Networks
4 . Clustered Network using Fiber Optic Stars
5 . Data F l o w Graph of Armstrong Cork Program

. 6 . Processing Element

7 . The University of Maryland Direct-Execution Architecture . .
8 . Instruction Execution Flow

. 9 . AMD29000BasedPE

10 . Packet Formats .
11 . Cluster Allocation for Armstrong Cork Program
12 . Cluster Allocation for Dragster Program

Page

3

6

10

12

18

25

26

28

36

43

47

52

vi

ABSTRACT

I

A direct-execution parallel architecture for the Advanced

Continuous Simulation Language (ACSL) is presented which overcomes the

traditional disadvantages encountered when simulations are executed on a

digital computer.

mapping of simulations onto a digital computer to be done in the same

inherently parallel manner as they are currently mapped onto an analog

computer. The direct-execution format maximizes the efficiency of the

executed code since the need for a high level language compiler is

eliminated. Resolution is greatly increased over that which is

available with an analog computer without the sacrifice in execution

speed normally expected with digital computer simulations.

The incorporation of parallel processing allows the

Although this report covers all aspects of the new architecture,

key emphasis is placed on the processing element configuration and the

microprogramming of the ACSL constructs.

ACSL constructs are computed using a model of a processing element based

on the AMD 29000 CPU and the AMD 29027 FPU. The increase in execution

speed provided by parallel processing is exemplified by comparing the

derived execution times of two ACSL programs with the execution times

for the same programs executed on a similar sequential architecture.

The execution times for all

vi i

CHAPTER 1

INTRODUCTION

Analog computers have traditionally been chosen over digital com-

puters for the simulation of physical systems because analog computer

architectures are tailor-made for solving systems of simultaneous

differential equations in an inherently parallel fashion. The main

drawback of an analog computer is the low resolution of its outputs

which will degrade the accuracy of the simulation. The traditional Von

Neumann digital computer is capable of higher resolution, but it

requires more computational time due to the sequential nature of its

architecture.

that overcomes the slow execution problem of a Von Neumann machine while

providing greater resolution than normally possible with an analog

computer.

This report will present a digital computer architecture

This paper will examine a specific simulation language, ACSL, and

use two techniques to improve its execution speed in order to simulate

systems in real-time. These two techniques are the use of a direct-

execution architecture to bypass the compiler, thereby increasing system

efficiency and speed, and the incorporation of parallel processing in

the system architecture to further maximize execution speed.

All aspects of the architecture will be examined, including the

microprogramming of the ACSL constructs, the processing element configu-

ration, the interconnection network, the 1/0 processor, and the

functions performed by the allocater. From this analysis execution

1

2

times of two example ACSL programs will be derived in terms of the

minimum real-time calculation interval.

With the addition of appropriate sensors and actuators, this

architecture could be used to simulate physical systems while they

interact with other physical systems in real-time.

modeling equations are accurate, the results of the simulation will be

precisely the same as if the actual component had been used. Further-

more, if the system being simulated is a type of computer controlled

system, then the same architecture used to model it could also be used

to implement the component being simulated.

Assuming the

- The Advanced Continuous Simulation Language, ACSL

The Advanced Continuous Simulation Language (ACSL) is used to model

dynamic systems by time dependent, non-linear differential equations

and/or transfer functions (Mitchell and Gauthier, Associates 1986).

Simulation of physical systems is a standard and useful analysis tool

used to test the design of a system prior to the actual construction of

the proposed system. For example, a program written in ACSL to

determine whether or not a pilot ejecting from his aircraft will strike

the plane's vertical stablilizer is a much better approach than actually

ejecting a test pilot to see if he clears the tail fin of the aircraft.

- A Direct-Execution Architecture
There are several ways high-level languages can be implemented.

Some architectures concentrate on hardware, some on software, and still

others on implementation technology. In general, computer architectures

to implement high-level languages fall into one of the classifications

shown in the tree diagram in figure 1 (Milutinovic 1988). Indirect-

3

t
0

4
3
c)
aJ
X

.A
cn
a,
L
3
c,

w u
I a J

U
aJ
u
3
U
aJ
CI

0)
m
ro
3
m c
ro
-1

c
u
L a

.A
c
0
L a

m
C

Q
C
ocn

.A

0

c,
. r)

//$
L
m
3
U
L
m
I
c
.A

(u
L
m
3
c,
v-

cno
c m
m c c

cn
C
0
. r l
+J

03
u
.I+
\c
.I+
in
in
(0

0
,I

:
3
4J
u
a,
.u
.I+
r
u
L a
L
a,
U

-I
J
I

d

a,
L
3 rn
LL
.A

4

execution architectures use software or hardware to translate or compile

the high-level language program in to a form suitable for machine

execution.

by incorporating hardware or software functions to execute high-level

language programs directly.

Direct-execution architectures bypass the translation step

When a compiler is used to convert a high-level language to machine

code, inefficiencies are introduced into the newly created machine code.

These inefficiencies cause the system to operate below the maximum

possible execution speed and cause the system to utilize more memory

than would be required if the high-level language constructs were pro-

grammed in a more efficient manner.

help solve these problems since each processing element is micro-

programmed to execute HLL constructs directly, thereby eliminating the

need for a compiler and the inefficiencies associated with it.

A direct-execution architecture can

Parallel Processing

Parallel processing will be incorporated in the new architecture to

There is always a need in industry for faster increase execution speed.

execution speeds when modeling dynamic systems.

used today simply cannot perform complex high-speed simulations in a

real-time environment. With the introduction of parallel processing

into a simulation language architecture, the simulation speeds for

complex tasks will increase greatly over currently available simulation

speeds.

California at Berkeley where the Department of Electrical Engineering

and Computer Science is working on the Msplice parallel simulator for

analog circuits. For some circuits a 32 processor version of Msplice

runs as much as 25 times faster than a uniprocessor version (Howe 1987).

The sequential machines

This has already been demonstrated at The University of

5

Parallel processing principles apply to any type device technology,

so if it is stated that a parallel processing architecture is not needed

because a higher speed technology (such as optical computers) will soon

be available, please note that parallel processing can increase the

speed of these devices in the same manner it is used to increase

the performance of silicon devices.

-- How to Improve the Current ACSL Computer Design
To compile an ACSL program today, one first converts the ACSL

source code to FORTRAN with a FORTRAN translator. The FORTRAN code is

then compiled to create executable machine code. Each step taken to

compile an ACSL program introduces inefficiencies into the resulting

machine code. This process is illustrated in figure 2 . Another problem

with the current method is the fact that the vast majority of variables

used in FORTRAN reside in main memory, thus making FORTRAN a memory

intensive language.

cache, execution would proceed at a higher rate if the variables were

contained in internal CPU registers rather than in memory locations.

Even if the memory variables are residing in a data

The direct-execution process rids an architecture of the problems

stated above. The need for a FORTRAN translator and compiler is elim-

inated since the ACSL constructs are microprogrammed at each processing

element (PE). This approach will result in more efficient code than

could be achieved with a compiler. The memory access problem will be

reduced by selecting a microprocessor with a large internal register

file permitting program variables to reside in internal CPU registers.

6

W
I-
m
>
m

W
m
0 a.
0

n

a
n

E
a,
c,
v)
>
rn
U
a,
VI
0 n
0
L a
L!
3
v)
L
a,
>
E
a,

-I-,
C
a,
L
L
3
u

CHAPTER 2

PARALLEL PROCESSING DESIGN CONSIDERATIONS

When designing a parallel processing architecture, there are

several decisions to be made that are not considered when designing a

typical sequential computing system. These decisions include the choice

between a fine or course grained system, the method employed to organize

memory, and what type interconnection network to use. These choices can

either make an architecture fast and efficient, or they can bog down an

architecture with inefficiencies to the point that a single high-speed

processor can out-perform the parallel processing system.

Fine-grained Course-grained Architecture

The granularity of an architecture describes the complexity of the

functions that each PE performs.

perform simple functions such as an addition or multiplication.

Conversely, a course-grained system's PE would be capable of more

complex tasks, such as the evaluation of an entire equation with multi-

plications, additions, subtractions, divisions, etc. Granularity also

expresses the ratio between computation and communication in a parallel

program (Howe 1987).

as having more communication overhead than course-grained systems.

A fine-grained system's PE would

Fine-grained systems are typically characterized

The system under consideration will be implementing high-level

language constructs, some of which are fairly complex; therefore, a

course grained architecture will be employed in order to keep a moder-

7

8

ately complex construct microprogram executable within a single PE.

Doing so will minimize communication requirements between PES and

decrease possible communication bottlenecks.

Shared Memory 01: Private Memory

In a shared memory system, multiple processors are connected to

multiple memory banks through one or more buses.

system is contained in every processors memory map making all memory

equally accessible by every processor.

processor simply initiates a memory read or write cycle to the desired

memory location.

the requesting processor is allowed to access memory. This method

provides the highest memory bandwidth but creates bottlenecks when

several processors need access to the same memory bank at once.

All memory in the

To access a memory location, the

If no contention is present from the other processors,

In a private memory system, variables are passed to and from

processors by way of a message passing scheme.

another processor, the requesting processor sends a message to the

processor holding the desired variable, and that processor sends a

message back containing the variable. In general, private memory sys-

tems are usually efficient when the interactions between tasks are

minimal, but shared memory systems can tolerate a higher degree of

interaction between tasks without significant deterioration in perform-

ance (Howe 1987). With this in mind, if an architecture has a high

degree of communication between tasks, a shared memory approach would be

more efficient; but if the tasks had a low degree of inter-communi-

cation, a private memory approach would be better.

To read a variable from

If a construct microprogram is considered to be a task in this ACSL

architecture, there is then only a moderate amount of communication

9

between tasks. This is primarily due to the fact that very few of the

ACSL constructs contain significant amounts of parallelism; therefore,

it appears that a private memory architecture would be the most

efficient.

Interconnection Network

The two types of interconnection networks or topologies to be

considered are the non-blocking crossbar switch and the fiber optic

star. Crossbar switches offer the highest communication bandwidth and

the most complex and costly design.

communication bit rates than crossbar switches but only one PE may use

the star network at a time. These interconnection networks are illu-

strated in figure 3 .

Fiber optic stars offer higher

If a system has a high degree of intercommunication between PES,

then a crossbar switch will offer the highest efficiency; on the other

hand, if communication between PES is low a fiber optic star will offer

the best solution. As stated earlier, there is relatively little

communication between tasks and what communication is present tends to

be broadcast-type transfers to update state variables in the system;

therefore, a fiber optic star would probably offer a more nearly optimal

solution than the crossbar switch when all variables such as transmis-

sion format, cost, complexity, and transfer rates are considered.

Clustering is a technique in which PES are grouped together with a

dedicated interconnection network, and these groups or clusters of PES

are connected by a dedicated interconnection network. By creating

levels in the interconnection network, clustering allows PES in a

cluster to operate on shared data with low communication overhead and

provides hardware facilities for multiple groups of PES to execute a

10

A FIBER OPTIC STAR

4 X 4 CROSSBAR SWITCH

F i g u r e 3. P o s s i b l e I n t e r c o n n e c t i o n N e t w o r k s

11

tightly coupled process within their cluster without affecting the

communications outside their cluster (Briggs and Hwang 1984).

shows an interconnection network that uses fiber optic stars within a

cluster and a fiber optic star connecting the clusters.

Figure 4

12

a
0

L
a,
n

Y

c,
a,
z

CHAPTER 3

REAL-TIME INSTRUCTION EXECUTION WITH ACSL

In order to simulate complex systems in real-time, parallel

processing will be incorporated into the architecture to boost execution

rates to maximum levels. Parallelism will be implemented on two levels:

the construct level and the program level. After examining the data

flow graphs in appendix A, it does not take long to realize that very

few of the ACSL constructs contain parallelism.

most important constructs in ACSL can be implemented with a parallel

algorithm; that construct is the INTEG or integration instruction.

Fortunately, one of the

Parallelism on the program level is much more accommodating than

parallelism on the construct level. Considering the fact that simula-

tions executed on an analog computer are programmed in an inherently

parallel manner, then it becomes clear that simulation programs written

in ACSL can be mapped onto a parallel architecture in the same manner

that simulations are mapped onto an analog computer architecture.

A direct-execution architecture offers several advantages over the

traditional compiler approach to high-level language implementation with

the largest advantage being in the form of more efficient code which

results in faster program execution. In a direct-execution archi-

tecture, the compiler is eliminated altogether, and in its place an

allocater is used to allocate segments of ACSL programs to the

various PES in the system. Resident at each PE are the hand-written

assembly language routines to execute all ACSL constructs which will

13

14

f

result in the most efficient programming possible. Although it is

beyond the scope of this paper to design the allocater, an attempt will

be made to specify its requirements and describe its basic operation.

Parallelism on the Construct Level

ACSL constructs have been classified into one of three different

categories.

parallelism, constructs approximated with a finite term series (such as

trigonometric functions), and constructs with inherent parallelism.

Table 1 shows all constructs in their appropriate category. Their data

flow graphs and microcoded routines can be found respectively in

appendix A and appendix B.

These categories are constructs with no inherent

Constructs in category I offer no parallelism and are executable on

one PE; in fact, several of these construct routines may be allocated to

one PE without overfilling that PE's program memory. Constructs in

category I range from simple boundary checks to simple calculations.

Constructs in category I1 again offer no parallelism in a course-

grained system but can be computed very efficiently by the use of a

floating point processor that is optimized for factored polynomial

evaluation. This point is discussed further in chapter 4.

Constructs in category I11 have useful amounts of inherent

parallelism which are exploitable in a course-grained system.

important construct in this category is the integrate instruction. In

order to take advantage of parallelism, the integrate construct will use

a second order parallel predictor-corrector algorithm.

is simply a restructuring of the traditional predictor-corrector method

to allow predicting of the n+l value while at the same time correcting

The most

This algorithm

15

TABLE 1

CATEGORIZED ACSL CONSTRUCTS

CATEGORY I

ACSL INSTRUCTIONS WITH NO PARALLELISM PRESENT IN A COURSE-GRAINED
SYSTEM.

ABS - ABSOLUTE VALUE.
AMOD - REMAINDER OF MODULUS.
BCKLSH - BACKLASH OR HYSTERICES.
BOUND - LIMIT A FUNCTION.
DBLINT
DEAD - CREATE DEADSPACE.
DELAY - DELAY WITH RESPECT TO TIME.
DERIVT - 1ST ORDER DERIVATIVE.
DIM - POSITIVE DIFFERENCE.
FCNSW - FUNCTIONAL SWITCH.
GAUSS - CREATE NORMALLY DISTRIBUTED RANDOM VARIABLE.
HARM - CREATE A SINUSOIDAL FUNCTION.
IABS - ABSOUTE VAi'u'E OF AN INTEGER.
IDIM - POSITIVE DIFFERENCE OF INTEGERS.
INT - INTEGERIZE F.P. VALUE.
ISIGN - APPEND A SIGN.
LIMINT - LIMIT INTEGRATION.
LSW,RSW - LOGICAL AND REAL SWITCH FUNCTIONS.
MOD - REMAINDER OF AN INTEGER DIVISION.
PTR - POLAR TO RECTANGULAR CONVERSION.
PULSE - GENERATE A PULSE TRAIN.
QNTZR - QUANTIZE A VARIABLE.
RAMP - LINEAR RAMP FUNCTION GENERATOR.
RTP - RECTANGULAR TO POLAR CONVERSION.
SIGN - APPEND A SIGN.
STEP - GENERATE A STEP FUNCTION.
UNIF - UNIFORM RANDOM NUMBER SEQUENCE.
ZHOLD - ZERO ORDER HOLD.

- LIMIT DISPLACEMENT TERM OF FUNCTION.

CATEGORY I1

ACSL INSTRUCTIONS APPROXIMATED WITH A FINITE TERM SERIES.

ACOS - ARC COSINE.
ALOG - NATURAL LOGARITHM.
ASIN - ARC SINE.
ATAN - ARC TANGENT.
COS - COSINE.
EXP - NATURAL EXPONENT.
EXPF - SWITCHABLE EXPONENTIAL
SIN - SINE.
SQRT - SQUARE ROOT.
TAN - TANGENT.

16

TABLE 1--Continued

CATEGORY I11

ACSL INSTRUCTIONS WITH PARALLELISM:

AMAXO, AMAXl, MAXO, MAX1 - INTEGER AND FLOATING POINT
MAXIMUM VALUE ROUTINES.

AMINO, AMINl, MINO, MINl - INTEGER AND FLOATING POINT
MINIMUM VALUE ROUTINES.

INTEG - INTEGRATION.

for the n value (Liniger, Werner, and Miranker 1966).

method, a speed increase factor close to two can be realized.

Using this

In addition to a parallel predictor-corrector method, a fourth

order Runge-Kutta integration method will also be programmed (Ralston

and Wilf 1965). Although basically a sequential process, the coef-

ficients K1, K2, K3, and K4 of the Runge-Kutta algorithm can be computed

for sets of simultaneous equations concurrently, thereby making the

execution time for a system of N equations on a parallel processing

computer approximately equal to the execution time for a system with a

single equation on a sequential machine.

Parallelism on the ProRram Level
As stated at the beginning of this chapter, ACSL programs can be

mapped directly onto a parallel architecture since simulations are

typically executed on an analog computer, and analog computers tend to

incorporate a large amount of parallelism. This is best demonstrated

with an example using the Armstrong Cork Benchmark (Hannaver 1986).

An ACSL program called the Armstrong Cork Benchmark is shown in

table 2 . A restructured data flow graph of this program is shown in

17

TABLE 2

ARMSTRONG CORK BENCHMARK

INITIAL

CONSTANT TEND = 50.OE-6

CONSTANT K1 = 1.OE-14, K2 = 1.OE6, K3 = 1.OE3, K4 = 1.OE6
CONSTANT K5 = 1.OE-2, K6 = 1.OE-5, K7 = 1.OE5, K8 = 1.OE6
CONSTANT K9 = 1.OE-3

CONSTANT X10 = 24., X20 = O., X30 = O., X40 = 0 .
CONSTANT X50 = O., X60 = 0.

MINTERVAL MINT = 1.OE-7
MAXTERVAL MAXT = 1.0

END

DYNAMIC

DERIVATIVE
XlDOT = -Kl*Xl - K3*Xl*X4 - K7*Xl"X3
X2DOT = -K2*X2 + Kl*X1 + K3*Xl*X4 + K7*Xl%3 + K9*X4
X3DOT = K6*X5*X5 - K7*Xl*X3 - K8*X3*X4
X4DOT = K2*X2 - K3*Xl*X4 - K4*X4*X4 + K6*X5*X5 -

X5DOT = K3*Xl"X4 - K5*X5*X5 - K6*X5f:X5
K8*X3f:X4 - K9*X4

X6DOT = K4*X4:kX4 + K5*X5*X5 + K8*X3*X4
xi = INTEG(XIDOT, x-io)
X2 = INTEG(X2DOT, X20)
X3 = INTEG(X3DOT, X30)
X4 = INTEG(X4DOT, X40)
X5 = INTEG(XSDOT, X50)
X6 = INTEG(X6DOT, X60)

EPS = (X1 - XlO) + X6 + (X2 + X4 + X5)

TERMT(T . GT . TEND)
END

END

TERMINAL
END

figure 5. The graph in figure 5 can be thought of as a set of 6 inte-

grators operating in parallel. One possible allocation algorithm might

be to allocate the algebraic equation XlDOT and the integrator X1

18

1

W
I-
Z
H

1
I

E
(0
L
ul
0
L a
Y
L
0
0

ul
c
0
L
4
u)
E
L a
Y-
O

S
m
n

0

X
d

19

to a cluster of PES, the equation X2DOT and the integrator X2 to another

cluster of PES, and so on until all s ix equations and integrators are

allocated. These six clusters of processors would then compute their

equations, perform their integrations, and update their results at the

appropriate communication interval all in parallel.

would be required to accumulate the program output EPS.

configuration and the use of parallel integration methods, an execution

speed increase of up to twelve could be realized over the usual

uniprocessor approach.

An additional PE

With this

Allocater Requirements

For real-time operation, the allocater has to allocate ACSL con-

structs in the most efficient manner, reduce and factor equations for

maximum execution speed, and optimally schedule the interprocessor com-

munications.

Resource and Construct Allocation

System resources must be allocated in an optimum manner to obtain

maximum system throughput. Instead of using main memory locations to

hold variables, the allocater will assign internal CPU and FPU registers

to frequently used variables. Doing so will allow maximum execution

speeds since most variables will be immediately available to CPU.

To maximize execution speed, ACSL constructs must be allocated on

the cluster level and the PE level in the most efficient manner. In

general, independent functions should be allocated in a way to allow

them to be executed in parallel; in addition, tasks with a moderate to

high degree of processor intercommunications should be allocated to a

cluster of PES, thus allowing the required communications between

20

processors to proceed without hindering other processor's intercommuni-

cations.

associated equation to a cluster of PES as described in the section

Parallelism on the Program Level.
be used on a parallel integration algorithm and one or more of the PES

could be used to evaluate the derivative function. The optimum number

of PES in a cluster would depend on the complexity of the program.

An example of this would be to allocate an integration and its

Two or more PES in the cluster could

Expression Reduction and Factoring

The allocater will be responsible for reducing algebraic expres-

sions down to the form that will allow maximum execution speed. This

process may include factoring a polynomial to allow rapid multiply/ac-

cumulate sequences.

approximations are programmed in this manner.

examine the following equation for the exponential function (Beyer

1984) :

The constructs involving finite term series

To illustrate factoring,

It may be factored to allow computation without generating higher powers

of X in the following manner:

EXP[X] = l+X[l+X[AO+X~Al+X[A2+X[A3+X[A4+X[A5]~~]]~~.

This form allows rapid computation of an exponential with floating point

units that incorporate a multiply/accumulate ALU.

Interprocessor Communication Scheduling

The allocater will be responsible for determining what time periods

the PES will have data ready to transmit. Using this information, the

21

allocater will schedule the order in which intracluster PES will

transmit to other intracluster PES and the order in which clusters will

transmit data to other clusters. The allocater is able to schedule data

transfers, because the execution times of all the construct routines are

known. Once the order of all data transfers is known, the allocater

loads information into every 1/0 processor telling it which data words

to use, what order they arrive, and where the data words go in the PES

memory.

processor that the fourth word seen on the star after the start of a

calculation interval is state variable X1 which it needs for its calcu-

lations.

required) and ignore all others.

lation period.

For example, the allocater might tell a particular 1/0

The 1/0 processor would read X1 (and any other variables it

This process would repeat every calcu-

The reason this complex scheduling scheme was devised is to mini-

mize the communication overhead associated with transferring a word of

data between PES. If data packets were used that contained addressing

or destination information, it would significantly increase the communi-

cation delays in the system. Using the scheduling technique allows the

use of data packets that contain little or no overhead characters, only

32 bits of data.

Real-Time Data Transfer

In order for a PE to transmit a word of data to another PE, the

only action taken by the transmitting PE is to write the data word to

the 1/0 processor.

received from the predetermined order assignments.

then formats the data into a packet, waits for that data word's

scheduled turn on the network, and then places it on the fiber optic

The 1/0 processor knows which data word it just

The 1/0 processor

22

star network. If the data is scheduled to be received by an intra-

cluster PE, that PE's 1/0 processor reads the data word and deposits it

into the proper location in that PE's memory.

cluster, it will be read by the cluster 1/0 processor and placed on the

intercluster fiber optic star for reception by the proper cluster at the

If the transfer is inter-

scheduled time.

When a data word is received by the 1/0 processor for use by the

PE, the 1/0 processor writes the data word to a predetermined memory

location and signals the PE by activating an interrupt line. The inter-

rupt causes the PE to retrieve the data word atomically with the LOADSET

instruction. The LOADSET instruction reads a word of memory and writes

back all ones to the same location after the read. With this technique,

the 1/0 processor can determine if the PE has read the data word before

updating the memory location with a new value. When all the operands

have been received and loaded by the interrupt routine, the interrupt

routine signals the executing task by setting a condition code to the

boolean true value. The executing task simply checks this condition

code, and when true, continues with the program execution.

Program Execution with Direct-Execution Architectures

Direct-execution architectures offer several advantages over other

architectures that use translators and compilers in that the direct-

execution architecture has no compilation overhead, offers single-copy

program storage, and has a high degree of interactiveness (Milutinovic

1988).

flexibility. Most direct-executions languages are implemented entirely

in hardware thus representing a nonoptimal hardware/software tradeoff,

A disadvantage of a direct-execution architecture is its lack of

except in specific applications. For example, it would not be advan-

23

tageous to use a direct-execution architecture developed for Ada in a

system used to execute FORTRAN code. Although the architecture

discussed in this thesis was designed to execute ACSL, it is flexible

enough to implement other host languages by simply re-writing the micro-

coded routines to execute whatever high-level language desired.

CHAPTER 4

PROCESSING ELEMENT CONFIGURATION

A processing element (PE) will be composed of a CPU, a FPU, high-

speed instruction memory, main memory, and an 1/0 processor.

will be a state-of-the-art microprocessor capable of sustained high MIPS

rates.

merically intensive tasks associated with ACSL. The high-speed instruc-

tion memory will hold the microcoded ACSL construct routines the CPU

will execute, allowing the CPU to execute at full speed without wait

states.

hold the microcoded routines for all ACSL constructs.

is responsible for monitoring the interconnection bus and relieving the

CPU from the overhead associated with interprocessor communications. A

block diagram of a PE is shown in figure 6.

The CPU

The FPU (floating point unit) will be required due to the nu-

Main memory will be made up of dynamic RAM and EPROM which will

The 1/0 processor

Execution Flow & Processing Element

Before an intelligent choice can be made as to what type processing

element to use, there must be an understanding as to the execution

environment the PE will be operating in. Figure 7 shows a typical

direct-execution architecture known as the University of Maryland

approach. Code to be executed is stored in the program memory, and data

variables are stored in the data memory. At execution, the lexical

processor scans the program memory to determine what high-level language

tokens it is to execute. The lexical processor then places the tokens

24

25

1

N H m /

m a i

I C T

0
\
H

cn
W
0
0

W
_J

0

V
H
I-

0

(I
W

L L

a3 a

n

m
H

c,
C
a,
E
al
d
W

L a

u)

a,
L
3
nr

LL
.*

26

L

T

(I) a

T

_ _ a

f
E

T i
roc

a,
L
53
c,
u
QI
c,

Jz
u
L

C
0

. T I
c,
3
u
a,
X
W
I
c,
u
a,
L
0
U
C
Iu

.rl

a

.PI

r(

. .
m
L
QI
>
.PI

C
3

a
L
3
m

27

into a token register for execution by the control processor or data

processor.

manipulations such as multiplication and shifting, and the control

processor executes tokens that change program flow such as GOT0 and IF

THEN instructions (Milutinovic 1988).

The data processor will execute tokens corresponding to data

The architecture designed to implement ACSL will be similar to the

University of Maryland approach, but will deviate from it in several

ways in order to simplify the design and increase program execution.

The ACSL direct-execution architecture will use only one processor to

execute program control instructions as well as data manipulation

instructions, although a floating point processor will be included to

assist in the calculation of floating point operands. To obtain the

maximum execution speeds, all lexical analysis will be performed by the

allocater prior to the start of execution.

will be resident in the CPU when execution starts. This is possible due

to the fact that ACSL programs execute the same code repetitively as

shown by the bold line (the primary loop) in figure 8.

DERIVATIVE section is simply executed over and over, incrementing the

time variable each pass until the terminate conditions are met.

Performing lexical analysis before execution starts eliminates the need

for a lexical processor in hardware, thus simplifying the design and

increasing throughput by eliminating any delays associated with having

the CPU wait for tokens.

The tokens to be executed

The code in the

When a PE receives (in the preprocessing stage) an ACSL construct

it is to execute or an operand it will use in execution, that PE trans-

fers the microcoded routine from main memory into high-speed static RAM

or deposits the operand into an internal CPU register. When program

28

t * START
Eva lua te s t a t e m e n t s

i n DERIVATIVE
s e c t i o n .

Execute s t a t e m e n t s i n
DISCRETE s e c t i o n .

v a r i a b l e an
even m u l t i p l e

Execute s t a t e m e n t s
f o l l o w i n g D E R I V A T I V E
and DISCRETE s e c t i o n s c ommun i c a t ion

J)
Increment t h e TIME

v a r i a b l e .

c o n d i t i o n s

F igu re 8 . I n s t r u c t i o n Execut ion F low

t

29

execution begins, the PE will be executing instructions entirely from

high-speed RAM with all operands contained in internal CPU registers,

thus allowing the fastest possible execution by eliminating access to

slow main memory.

CPU -
Microprocessors examined will be limited to the new families of 32

bit machines in order to obtain the most performance per processing

element (PE).

basic types, complex instruction set (CISC) or reduced instruction set

(RISC) microprocessors.

processors since they are characterized as having a large register set,

being able to execute one instruction per clock cycle and having a high

MIPS rate.

that allows it to execute one instruction per clock cycle; on the other

hand, CISC processors usually pay a performance penalty for supplying

more complex instructions in the form of multiple clock cycles per

instruction. In most cases it simply takes longer to decode and execute

complex variable length instructions, and this inefficiency causes even

simple operations in a CISC processor to take multiple clock cycles to

execute--operations that a RISC processor would execute in one clock

cycle (Toy, Wing, and Zee 1986).

Of the available 32 bit microprocessors there are two

Our search will concentrate on R I S C type

RISC processors usually use a hard-wired instruction decoder

Microprocessor Survey

A l l the microprocessors listed in table 3 have one feature in

common, except the 86C010 ARM, and that is they all use a dual bus

Harvard architecture. Harvard architectures significantly improve

performance by allowing data and instruction accesses simultaneously.

30

TABLE 3

COMPARING 32 BIT RISC MICROPROCESSORS

CLOCK CPU
NAME MANUF . SPEED REGISTERS MIPS

AMI) 29000

The AMD 29000 has built-in support for both a data and an instruc-

tion cache with the cache memory located externally from the processor.

It is said to be targeted toward general purpose CPU applications such

as workstations and personal computers. Operating at 25 MHz, Advanced

Micro Devices claims the 29000 offers about 12 times the performance of

a VAX-11/780 for integer and systems code. The generous 192 register

file acts as a data cache for a moderate number of operands while giving

the ability to read-modify-write data in a single clock cycle. The AMD

29000 has a 32 bit fixed width instruction set. Large, fixed length

instructions encode programs less efficiently (in terms of memory used)

than small, variable-length instructions, but they can be processed much

faster. The AMD29027 FPU is available to increase floating point compu-

tations greatly over software routines (Johnson 1987b).

Inmos Transputer

The Inmos Transputer w a s designed with parallel processing in mind.

31

It is a high-integration machine which has four high-speed (20M bps)

serial channels for communication with other processors, two timers, an

8 channel DMA controller, and a dynamic ram controller on chip. Systems

have been built using over 100 Transputers that showed a linear increase

in computing speed for each Transputer added.

Transputer architecture for this application is the fact that the 1/0

processor is located internally in the CPU and must be explicitly

programmed.

to relieve the CPU of the overhead associated with formatting the

message/data, computing where the data is to be send, etc. The Transpu-

ter must take time to program the serial 1/0 channels with such informa-

tion--time that could have been spent by the CPU in executing an ACSL

program.

processor has been announced by Inmos and should be available soon.

This will make the Transputer family more attractive to number-crunching

applications, but for now it will not be considered further in this

application (Cushman 1987).

A disadvantage of the

For maximum speed, an external 1/0 processor should be used

A new upgraded Transputer with a built-in floating point

Fairchild Clipper

The Fairchild Clipper represents to some the state of the art in 32

bit microprocessors.

CISC and RISC in that it contains a microprogram ROM to execute complex

instructions, but this ROM is by-passed when the Clipper executes a more

primitive instruction.

processors while still enjoying the sophisticated instructions of a

CISC. Another feature of the Clipper is that it contains a complete 4 K

byte data cache, a 4K byte instruction cache, and a floating point

processor on-board.

This three chip set is actually a blend between

This offers the high MIPS rate of RISC

The Clipper's register file contains 32 general

I

32

purpose registers that can be used for data or addressing, and eight 64

bit registers that are dedicated to floating point calculations.

Clipper instruction set contains 101 hardwired single clock cycle

instructions and 67 microprogrammed complex instructions. Instruction

lengths vary from 16 to 64 bits wide in multiples of 16 bits (Hunter

1987).

The

VLSI 86C010

The VLSI 86C010 is intended to be a low cost RISC 32 bit micropro-

cessor. Due to its standard von Neumann architecture, slow clock speed,

and small register file, it will be a low performance device as well and

will not be considered for this architecture (Cushrnan 1987).

TI 74AS88XX and AMD 29300

The remaining two processor families, the TI 74AS88XX and the AMD

29300, are very similar architectures, and many designers mix and match

various family members from both manufacturers when designing a system.

Both of these processors are fixed-width 32 bit bit-slice microproces-

sors. A bit-slice CPU is composed of various parts that let a user

configure his architecture for his application. Using a bit-slice CPU

does increase your parts count, but this is offset by the fact that a

bit slice system usually offers superior performance to that of a fixed

architecture microprocessor. As in a classic RISC machine, a bit slice

processor executes one microinstruction per clock cycle. The designer

has the option of including complex instructions in the architecture by

writing a microprogram (with the primitive microinstructions) to

implement the complex function (Cushman 1987).

33

Microprocessor Selection

The three most impressive microprocessors in the survey are the AMD

29000, the Fairchild Clipper, and the TI 74AS88XX family. All three

offer similar instruction sets. The Clipper does offer more complex

instructions than the others, but this is offset by the fact that these

instructions take multiple clock cycles to execute. As far as register

files are concerned, all three processors offer a large number of

registers with the Clipper having 32, the 74AS88XX having an expandable

65 word register file, and the AMD 29000 boasting an impressive 192

general purpose 32 bit registers.

selecting a microprocessor is the execution speed or MIPS rate of each

processor. Given that all three processors can execute a simple

instruction in one clock cycle, the limiting factor in performance

becomes the access time to the instruction cache or instruction memory.

A processor cannot execute instructions faster than it fetches them.

The last factor to consider before

The Clipper contains a 4K byte instruction cache configured as a

four-way set associative cache with a quadword line buffer.

total access time for the quadword line buffer is 60nS and the total

access time for the main cache memory is 120nS, then depending on the

instruction length (16 to 64 bits), the average access time for in-line

code would be given by table 4 (Hunter 1987).

If the

Examining these calculations shows that even if all the Clipper

instructions were 16 bits long, the highest MIPS rate possible would be

15 MIPS.

load the quadword line buffer or the main cache memory. Unless the

cache mechanism can be disabled and the Clipper allowed to fetch one

instruction word per clock cycle, it appears that in this application

This figure does not take into account the time necessary to

34

TABLE 4

AVERAGE INSTRUCTION ACCESS TIMES FOR CLIPPER

ACCESSES TO ACCESSES TO
INSTRUCTION LINE BUFFER MAIN CACHE TOTAL AVG.
SIZE @60nS EACH @120nS EACH ACCESS TIME

(where the program will be executed totally out of high-speed static

RAM) the cache system will deteriorate performance rather than enhance

it.
The AMD 29000 offers several access protocols: simple access,

pipelined access, and burst-mode access. All of the access protocols

will fetch instructions at a 25MHz rate, but the burst-mode is easier to

implement, since there are not as many address transfers or decodes to

perform (Johnson 1987b).

The TI 74AS88XX uses a simple pipelined approach to access program

memory. A microsequencer places an address on the microprogram memory,

and the same clock edge that updates the microsequencer address output

latches the previously addressed output from the microprogram memory

into the instruction register. This allows instructions to be executed

and fetched at a maximum rate of 20MHz (Texas Instruments, Inc. 1985).

After examining the results of the above analysis and the features

contained in each of the microprocessors, it appears that the AMD 29000,

with its 192 general purpose registers and 25 MIPS execution rate,

offers the best solution. A block diagram of a PE constructed with an

AMD 29000 is shown in figure 9 (Johnson 1987a). The TI bit-slice

35

processor family offers approximately the same performance (or possibly

slightly higher, depending on the efficiency of its FPU) as the AMD

29000, but due to the complexity and size of this bit-slice CPU, it was

not selected.

with several layers of memory hierarchy, ranging from very fast to

extremely slow.

unit decreases the effective access time from 500nS for dynamic RAM to

around 100nS, a 500X improvement in performance, but, the Clipper does

not seem well suited to this particular application (Hunter 1987).

The Clipper performs at its best when used in systems

The Clipper's elaborate cache and memory management

Understanding The AMD 29000

For those not familiar with the AMD 29000, there are a few details

about its programming that should be understood. Due to its pipelined

architecture, the AMD 29000 uses a delayed branch mechanism. With a

delayed branch, the instruction immediately following a branch instruc-

tion will always be executed.

can be placed after a-branch instruction, the branch instruction has an

execution time of one clock cycle; otherwise, a NOP instruction will

have to follow the branch, giving the branch instruction an effective

In the case where a useful instruction

execution time of two clock cycles.

The AMD 29000 has a unique way of handling conditional instruc-

tions. Instead of having a flag register which all conditional instruc-

tions use, the AMD 29000 allows conditions for instructions to come from

any general purpose register. Certain instructions set true or false

boolean values in a general purpose register, values that conditional

branch instructions can use at a later time to determine whether to take

a branch or to continue execution (Johnson 1987b).

36

r

L

-

I- a

0
0
0
07 cu
0
E a

Ln
m
W a
0
0 a

'I> a u

H
I-
0
3 m
I-
m
Z
H

T
U E
3 0

I-
m
Z

aa

I H
L

t

z
0
H
I-

c/3
Z
H

I

>-
I-0

E

a m
a x a w

a
0

c
t- cn
0

l- a
0

(I
W

LL

a

H

a
H

37

Microprogram Timing Analysis

The following paragraphs will examine the execution times of the

AMD 29000 assembly language ACSL construct routines, shown in Appendix

B, and specify the assumptions and conditions used to obtain these

speeds.

the ACSL construct routines is shown in table 5.

A summary of the execution times and the average MIPS rates for

TABLE 5

MICROPROGRAM TIMING RESULTS

INSTRUCT IONS AVERAGE EXECUTION
CONSTRUCT EXECUTED MIPS TIME (nS)

ABS ,1 25 40
ACOS 35 12.5 2800
AINT 7 12.5 560
ALOG 62 12.8 4840
AMAXO 7 WNT+ 1 2 varies (7*CNT+21)*40
AMAX1 7*CNT+12 varies (10*CNT+21)*40
AMINO 7*CNT+12 varies (7*CNT+21)*40
AMIN1 7 WNT+ 12 varies (10*CNT+21)*40
AMOD 40 12.99 3080
AS IN 31 12.5 2480
ATAN 77 12.5 6160
BCKLSH 24 15.38 1560

cos 28 12.5 2240

DEAD 21 14.58 1440
DELAY 12 21.42 560
DERIVT 41 13.31 3080
DIM 10 15.63 640
EXP 31 12.5 2480
EXPF 39 13.0 3000
FCNSW 15 21.43 700
GAUSS 153 15.61 9800
HARM 47 13.06 3600
IABS 5 12.5 400
IDIM 4 25 160
INT 5 12.5 400
INTEG :
RUNGE - KUTTA 4 3+4f:FUNCTION 12.5 32 80+4f:FUNCTION
PREDICTOR 14+FUNCTION 12.5 960+FUNCTION
CORRECTOR 16+FUNCTION varies 1160+FUNCTION+DELAY
ISIGN 5 12.5 400
LIMINT 16 15.39 1040

------------I---- ...

BOUND 20 16.67 1200

DBLINT 18 16.08 1120

TABLE 5--Continued.

INSTRUCTIONS AVERAGE
CONSTRUCT EXECUTED MIPS

EXECUTION
TIME (nS)

LSW
MAX0
MAX1
MINO
MINl
MOD
PTR
PULSE
QNTZR
RAMP
RSW
RTP
SIGN
SIN
SQRT
STEP
TAN
UNIF
ZHOLD

3
7*cNT+9
7WNT+16
7 *CNT+9
7 WNT+ 1 6

55
70
31
60
10
3

353
5
32
245
10
32
17
3

25
varies
varies
varies
varies

25
12.5
16.15
17.05
15.63
25
13.81
12.5
12.5
15.09
16.67
12.5
14.66
25

120
(7*CNT+15)*40
(10*CNT+29)*40
(7 f:CNT+15) 240
(lO*CNT+29)*40

2200
5600
1920
3520
640
120

25560
400
2560
16240
600
2560
1160
120

Assumptions Used In Analysis

The following assumptions were made in the analysis of the ACSL

construct routines:

1. Operands (except where noted) are contained in internal
registers in the AMD 29000.

2. There will be a 100% hit ratio in the Branch Target
Cache.

3. Instruction memory will accommodate one cycle accesses.

4. Load and store instructions require two clock cycles
f o r execution, and all other instructions used require
only one clock cycle.

5. All floating point operands are 32 bit single precision
values.

Since there are 192 general purpose registers in the AMD 29000 and

for a large number of PES there will be a relatively small number of

operands per PE, the assumption that all operands will be held in

39

internal CPU registers is not unreasonable. This assumption is verified

by examining the microcoded routines in appendix B.

single routine that uses more than a ten registers.

There is not a

The AMD 29000 contains a Branch Target Cache which holds informa-

tion regarding the 32 most recent branches.

executed the four instructions at the target location are saved in the

Branch Target Cache. When the branch is executed again, the processor

pipeline is filled with instructions from the Branch Target Cache,

allowing the processor to proceed without having to wait for the pipe-

line to refill.

derivative section repetitively and the construct routines tend to

contain in-line code, it is safe to say that branches taken will be

contained in the Branch Target Cache.

The first time a branch is

Since ACSL programs execute the same code in the

In order to have memory fast enough to allow one-cycle accesses,

static RAM memory with access speeds of 20nS or less will have to be

used.

devices on the market today with speeds of 15nS to 20nS.

This does not present a problem since there are several memory

All AMD 29000 instructions (except LOADM and STOREM) are designed

to execute in one clock cycle. Unfortunately, the LOAD and STORE in-

structions will require two clock cycles to execute when instructions

are being fetched at a rate of 25 MHz (one per clock cycle), because the

address bus is shared between data operations and instruction fetches.

The processor will require one clock cycle to generate the LOAD or STORE

instruction address and another clock cycle to generate the operand

address.

access memory, the loading and storing of data operands will be trans-

parent, since the operand address generation will be performed during

In applications where multiple clock cycles are required to

40

the the time periods (referred to as wait states) the CPU is waiting for

instruction memory.

Using 32 bit floating point operands will provide sufficient

resolution and accuracy for the majority of applications.

precision operands are required, execution times will not significantly

increase, since the AMD 29027 FPU performs double precision operations

in the same amount of time as single precision operations.

additional requirements will be the time necessary to load and unload

the extra words to and from the FPU and the extra storage required for

the larger operands.

If double

The only

- An Optimal CPU/FPU

After examining the characteristics of the AMD 29000 microproces-

sor, it becomes obvious that a theoretical processor with different

features could significantly improve the performance of this architec-

ture. Possible improvements to the processor include the following:

1. Separate address buses for instructions and data.

2. Integral floating point unit.

3. Non-pipelined operation, both in the CPU and the FPU.

The only factor keeping all construct routines from operating at 25

MIPS is the fact that two clock cycles are required for a LOAD and a

STORE operation. If separate address buses for instructions and data

were used, an instruction could be fetched and a data value stored in

one clock cycle, thus bringing the average MIPS rates in table 5 to 25

MIPS.

An integral floating point unit could improve system performance by

reducing the burden of loading and unloading operands to and from the

FPU. Currently, two clock cycles are required to load or unload 32 bit

41

operands; but with an integral FPU, external accesses could be

eliminated by sharing internal registers.

Pipelining is a common technique used to improve the throughput of

a CPU; unfortunately, it can cause additional delays when branches are

encountered.

lined in order to avoid the branch problem. The AMD 29027 FPU is also

pipelined for maximum execution speed.

pushed through the unit with instruction or operand writes until the

result is present at its outputs. This fact significantly increases

execution time for floating point operands by causing the FPU to take up

to 40011s to compute a result when it is capable of performing the same

operation in 200nS.

be dependent on two cycle LOAD or STORE instructions.

The optimal CPU for this architecture will not be pipe-

The data in the FPU must be

For the optimal FPU, pipeline advancement would not

Input/Output Processor

In order for a parallel processing system to operate at peak

performance levels, the interprocessor communication structure must be

fast and efficient. The 1/0 processor must be able to retrieve vari-

ables from the interconnection bus network and deposit them into the

CPUs memory as fast as possible to minimize the communication overhead

of the parallel processing system. Although it is beyond the scope of

this paper to design an 1/0 processor, the following paragraphs will

attempt to describe a possible 1/0 processor in sufficient detail to

derive realistic times for the communication delays.

Intelligent versus Nonintelligent I/O Processors

There are two basic extremes when it comes to 1/0 processor design,

the intelligent 1/0 processor and the nonintelligent 1/0 processor.

42

The intelligent 1/0 processor is characterized as having a programmable

CPU and the nonintelligent 1/0 processor is characterized as being a

collection of dumb, hardwired state machines.

The intelligent 1/0 processor has the advantage of being able to

handle errors intelligently, perform more complex tasks, and make the

system architecture flexible in terms of packet length, content, and

format.

advantage over a programmable 1/0 processor since it simply reacts to

conditions instead of analyzing them first.

The nonintelligent or hardwired 1/0 processor has a speed

Perhaps the optimal solution is an 1/0 processor that is a blend of

the two extremes. It could contain intelligence in the form of a micro-

processor which would monitor the communication process, including the

complex scheduling of interprocessor transfers. As long as processes

were proceeding normally, the microprocessor would do nothing, and the

hardwired data transfer circuitry could proceed at a maximum rate. If

an error was detected or some unusual condition occurred, the micro-

processor could step in and conduct error recovery or tell the hardware

how to handle the unusual condition.

Packet Formats

Now that an 1/0 processor configuration has been decided upon, a

data communication format may be chosen. Figure 10 shows various packet

formats that could be used. To simplify the 1/0 processor design, all

packets will use a 32 bit fixed length with one extra bit on the start

of the packet to designate what type packet it is, and an extra bit on

the end for parity checking. If the prefix bit is a zero, that packet

contains a data word; if the prefix bit is a one, that packet contains a

command that is directed to one or more PES.

43

1
d

-

>
I-
H
(I a
n

n
(III
0
2z

a
a I-
(21

d

m
I-
H
m

-

>-
I-
H
(I a
n

L

Z
0
H
l-

H
(I
0 cn
W
c3

a

a

0
d

al

44

Interprocessor Communication Times

Using the model of the fiber optic star interconnection network

shown in figure 3, the model of the 1/0 processor discussed in the 1/0

processor sections, and the model of the communication structure shown

in figure 10, an approximation of the time to transfer data from one PE

to another can be determined as shown in table 6 .

Table 6 gives a total time of 51 clock cycles at the fiber optic

star bus frequency and 7 clock cycles at the CPU clock frequency to

transfer a data word to an intracluster PE.

bus frequency of 300MHz and a CPU frequency of 25MHz, the communication

delay time for intracluster transfers will be 450nS. Assuming there is

no waiting for access to the intercluster fiber-optic star, no

additional delay will be added to the communication delay time for an

intracluster transfer.

Using a fiber optic star

45

TABLE 6

INTRACLUSTER COMI"ICATI0N ANALYSIS

CLOCK
CYCLE FUNCTION PERFORMED

TRANSMITTING

CHAPTER 5

ARCHITECTURAL EVALUATION

Chapter 5 will attempt to give a better understanding of the per-

formance of this direct-execution parallel architecture by evaluating

two ACSL programs in terms of execution speeds and computing resources

required.

Armstronp; Cork Benchmark

The Armstrong Cork benchmark, shown in table 2, will now be evalu-

ated to determine the minimum real-time calculation nterval possible

(Hannaver 1986).

allocate the program constructs to the various PES and clusters in the

system. One such allocation of clusters is shown in figure 11. In

order to insure maximum execution speed, equations should be factored

The first step in analyzing an ACSL program is to

for ease of computation. The resulting factored equations that will be

integrated every calculation interval are listed below:

XlDOT = Xl*(-Kl-K3*X4-K7*X3)

X2DOT =

X3DOT = K6*XS~X5+X3"(-K7*Xl-K8*X4)

X4DOT = X4*(-K3*X1-K4*X4-K8~X3-K9)+K2*X2+K6*X5*X5

X5DOT = X5*X5(-K5-K6)+K3*X12X4

X6DOT = X4*(K4;kX4+K8*X3)+K5f;X5*X5.

Using the allocation of computing tasks shown in figure 11, the

46

47

X4DOT

X 1DOT

& CLUSTER

X5DOT

XGDOT

X 1DOT w
CLUSTE ‘a

F i g u r e 1 1 . C l u s t e r A l l o c a t i o n f o r A r m s t r o n g C o r k P r o g r a m

48

calculation times and resources required at each cluster were derived

and shown in table 7. The corrector routine of the parallel predictor-

corrector method will always take longer to execute than the predictor

routine; therefore, only the corrector routine will be analyzed. For

the sake of simplicity, it will be assumed that the derivative function

is evaluated entirely on one PE.

equation for the output function EPS.

five additions which can be evaluated in 1.2uS.

Cluster 7 w i l l be used to evaluate the

The equation for EPS will require

TABLE 7

ARMSTRONG CORK CLUSTER ACTIVITY

DERIVATIVE CORRECTOR
EVALUATION EVALUATION PES

CLUSTER TIME TIME USED

To obtain the minimum calculation interval possible with this

configuration, the communication delay times of all the state variables

must be considered. Since all state variables are used in other equa-

tions, their values must be updated every calculation interval. The

updating of values will be done after the derivative function is inte-

grated and will result in an additional delay of 1.34uS. The output

function EPS will be transmitted to the host computer every calculation

49

interval for recording. The minimum calculation interval can now be

determined by taking the worst execution time for the clusters and

adding it to the update delay, 1.34uS.

cluster 4 (3.85~s); therefore, the minimum real-time calculation

interval is found to be 5.19uS. This value could possibly be lowered by

dividing the function X4DOT among two or more PES for evaluation.

this method is taken, care should be taken to insure that communication

bottlenecks to not occur due to excessive task division.

The slowest executing cluster is

If

Dragster Benchmark

The DERIVATIVE portion of an ACSL program named Dragster is shown

in table 8 (Hannaver 1986).

the same fashion the Armstrong Cork program was examined. Figure 12

shows several clusters of PES connected by the intercluster fiber optic

star and the various functions allocated to each cluster.

The Dragster program will be analyzed in

The calculation activity at each cluster will now be explained in

detail:

Cluster 1.
obtain OMEGAE. The derivative function will require 1.64uS to evaluate,

thus making the integration last 3.25uS.

Cluster 1 is responsible for performing an integration to

Cluster 2. The integration of OMEGAT will use five PES, two to perform

the predictor-corrector algorithm, one to evaluate the equation for TE,

one to evaluate the equation for FRIC, and one to evaluate the equation

for FT.

evaluate and transmit to the PES responsible for integration and the

equation f o r FRIC will require 1.65uS to compute and transmit to the PE

evaluating FT. The equation for FT will require 690nS to calculate

The equation for the variable TE will require 0.85uS to

50

TABLE 8

DRAGSTER PROGRAM

DERIVATIVE

'THROTTLE CONTROL'
CONSTANT TRC = 1.3

' ENGINE '
OMEGAE = INTEG((GEAR*OMEGAT - OMEGAE) /TAUE, OMEGEO)
TE = TRC*TN(OMEGAE)

CONSTANT OMEGEO=100
CONSTANT GEAR = 3.0, TAUE = .1

'REAR TIRE'
IT = 0.5*(MT/GC)*RT**2
OMEGAT = INTEG((TE - RT*FT)/IT, OMEGTO)
FT = FRIC*((MB + MT)*G/GC - FF)

CONSTANT OMEGTO=O
CONSTANT MT = 150., RT= 1.8

'ROAD FRICTION'

LS1 = SLIP.GT..15
LS2 = SLIP.GT..2
FRIC = RSW(.NOT.LSl, (1.4/.15)*SLIP, 0.) +

SLIP = (RT~OMEGAT - V)/VMAX

RSW(LSl.AND. .NOT.LS2, 1.4, 0.) +
RSW(LS2, .65, 0.)

CONSTANT VMAX = 500.

'FORWARD MOTION'
VDT = (FT-FD)/((MB + MT)/GC)
V = INTEG(VDT, VO)
x = INTEG(v, xo)

CONSTANT VO = O., XO = 0.
CONSTANT MB = 1500.

'AERODYNAMIC DRAG'
FD = .5*(RHO/GC)*CD*A*V**2

CONSTANT A = 12., CD = .15, RHO = .081

'BODY ROTATION'
SINTP = SIN(THETA + PHI)
COSTP = CON(THETA + PHI)
IB = (MB/GC)J:(l + LCGn*2)
OMEGAB = INTEG((TE + LWBnFF + (MB/GC)*LCG"VDT*SINTP -

(MB~~G/GC)*LCG*COSTP)/IB, OMEGBO)
THETA = INTEG(OMEGAB, THETAO)

CONSTANT OMEGBO=O., THETAO=O.
CONSTANT LCG=4., LWB=18., PHI = .174533

'FRONT SUSPENSION'
FF = BOUND(0,5000. , -LWB:" (KS:"THETA + KD:"OMEGAB))

-

TERMT((TIME. GT : RUNTIM) . OR. (X. GT . W) . OR. FLIP)

TABLE 8--Continued

~.

51

CONSTANT KD = loo., KS= 8400.

'RUN TERMINATION'
FLIP = THETA.GT.l

'@RECORD(RECOl,,,,,,,,OMEGAE,VDT,V,X,OMEGAB,THETA, ...
OMEGAT , TIME) '

END $ ' DERIVATIVE '

after the value for FRIC is received, making the execution time from the

start of the calculation interval for evaluating and transmitting FT

equal to 2.34uS.

Once TE and FT are computed, the integration of OMEGAT' can con-

tinue. The execution time for the derivative expression (measured from

the start of the calculation interval) is 3.53uS, thus making the total

time necessary to calculate OMEGAT equal to 5.14uS.

Cluster 2.
for VDT can be evaluated on two PES in 1.48uS, thus making the evaluation

time for the integration 3.09uS.

Cluster 3 is responsible for integrating VDT. The equation

Cluster - 4 . Cluster 4 is responsible for integrating the variable V.

The integration will take 1.61uS.

Cluster 5.
tive of OMEGAB is composed of FF, SINTP, and COSTP; therefore, values

for FF, SINTP, and COSTP will first be evaluated simultaneously on

separate PES to decrease the derivative function evaluation time. FF

will require 2.051s to evaluate and transmit; SINTP will require 1.97uS

Cluster 5 is responsible for computing OMEGAB. The deriva-

52

CLUSTER CJ

CLUSTER f7J
OMEGAE w

HOST COMPUTER
Records v a l u e s t o I be p l o t t e d . I

F i g u r e 12. Cluster A l l o c a t i o n f o r D r a g s t e r Program

53

to calculate and transmit; and COSTP will require 1.81uS to compute and

transmit. The function evaluation time for the derivative of OMEGAB

will require 2.841.1s (after FF, SINTP, and COSTP are computed), bringing

the integration time for OMEGAB to 4.45uS.

cluster execution time of 6.5uS.

This results in a total

Cluster 5.
OMEGAB. The execution time for this integration is 1.61uS.

Cluster 6 is responsible for integrating the variable

A summary of the cluster execution times and the resources required

for the Dragster program is shown in table 9. As in the Armstrong Cork

program, the update times must be computed before the maximum calcu-

lation interval may be derived. There are 10 variables used by the

different clusters of PES and the host computer (who records values for

plotting).

calculated, an additional delay of 450nS will result. Adding this delay

When the variables are updated as soon as a new value is

to the slowest executing cluster (6.5uS) shows the minimum real-time

calculation interval is 6.95uS. With further analysis, it is possible

that this value could be lowered with a more judicious allocation of

processing resources.

54

TABLE 9

DRAGSTER PROGRAM CLUSTER

DERIVATIVE CORRECTOR

ACTIVITY

TOTAL

CHAPTER 6

DISCUSSION OF RESULTS

A direct-execution parallel architecture has been presented that

includes an interconnection topology, the requirements for the allo-

cater, a model of a processing element, a model of an 1/0 processor, the

interprocessor communication formats, a survey of current 32 bit RISC

microprocessors, a model of an ideal microprocessor, and the micro-

programming for the ACSL constructs. Armed with the above items, the

execution times and the resources required for two ACSL programs were

determined as shown in chapter 5. It should be noted that the execution

times derived in chapter 5 are the actual values that should be expected

if the architecture was implemented, since all pertinent variables were

considered (such as interprocessor communication times and the required

data logging).

Parallel versus Serial Execution

To get a better understanding of the results of chapter 5, the

execution speeds obtained for the Armstrong Cork program and the

Dragster program will now be compared to execution speeds for the same

programs obtained from a sequential direct-execution architecture.

Assuming that a 25MHz AMD 29000 and an AMD 29027 FPU were being used and

that they were executing exclusively from high-speed static RAM with no

wait states, then the resulting execution speeds for the Armstrong Cork

program and the Dragster program would be the values shown in table 10.

55

56

TABLE 10
COMPARISONS BETWEEN SEQUENTIAL AND PARALLEL IMPLEMENTATIONS

One major difference between the parallel implementation and the

sequential implementation is the type of integration routine used.

Since there is only one PE in the sequential approach, naturally the

parallel predictor-corrector method cannot be used; instead, a serial

form of the predictor-corrector method obtained from the Adams pair

shown below will be used (Liniger and Miranker 1966):

Yp(n+l) = Y(n) + .5h(3Fc(n) - Fc(n-1)) and

Yc(n+l) = Y(n) + .Sh(Fp(n+l) + Fc(n)).

The time required to compute the above two equations when executed

on a single PE is given by:

Serial Integration Time = 1.68uS + 2"(DET).

In contrast, the execution time for the parallel corrector algorithm is

represented by:

Parallel Integration Time = 1.16uS + DET + CD.

DET represents the derivative evaluation time and CD is the communi-

cation delay.

corrector method with the serial case shows that the parallel method

Comparing the execution time for the parallel predictor-

57

(for a 450nS communication delay) will out-perform the serial method by

a factor of 1.04 to 2.0, depending on the derivative evaluation time.

These comparisons assume that the derivative evaluation times are the

same for both the parallel case and the serial case. This will not be a

valid assumption in an optimal parallel system, since a complex

derivative function would be divided among several PES, thus reducing

its derivative evaluation time.

Armstrong Cork Program

Summing the individual serial integrations for the Armstrong Cork

program results in a total execution time (per calculation period) of

30.32~s.

serial system executes 5.84 times slower than the parallel system.

theoretical maximum increase of 12 (for the derivative evaluated on a

single PE) was not realized, because the communication delays necessary

to update state variables in the parallel system and the overhead

associated with evaluating the predictor-corrector equations were not

zero. If the communication delays and the overhead for computing the

integration equations are assumed to be zero, or the derivative

evaluation times are large enough to make the communication delays and

the overhead for the integration equations negligible, then the parallel

architecture will operate 12 times faster than the serial architecture.

Comparing this value with the parallel case shows that the

The

Dragster Program

The parallel version of the Dragster program had a slightly larger

execution speed increase (over the serial version) than the Armstrong

Cork program. This was due to the complexity of the derivative func-

tions evaluated and the nature of their equations. Two of the deriva-

58

tive functions were broken down into smaller parts and computed in

parallel, thus giving an additional increase in execution speed. If the

communication delays and integration equation evaluation times are

assumed to be negligible, the parallel architecture will execute eight

times faster than the serial architecture. Since two of the derivative

functions do not require any time to calculate, the theoretical maximum

speed will be limited to eight times the serial method, not twelve as in

the Armstrong Cork program. The theoretical maximum speed ratio assumes

that the derivative functions are executed on individual PES; in order

to increase the parallel processing execution times, the allocater could

distribute complex derivative functions among several PES to allow their

computation in parallel.

Conclusions

It has been shown that the combination of parallel processing and

direct-execution concepts significantly increases execution speeds of

ACSL simulations.

is, the more benefits parallel processing will provide. It is also

apparent that the communication delays have a direct bearing on archi-

tecture performance, especially when simple derivative functions are

being evaluated. The optimum environment for parallel processing occurs

when the derivative functions are large enough to make the communication

delays negligible and large enough to allow their restructuring in order

to execute portions of them in parallel.

It appears that the more complex a given ACSL program

The direct-execution concepts benefit both parallel and sequential

architectures by generating the most efficient code possible.

advantages of a direct-execution architecture are highlighted by ACSL

programs. The simple, repetitive flow of ACSL programs, along with the

The

~~

59

ultra-efficient code generated by the direct-execution approach, allows

an ACSL program to be executed to reside in a small block of high-speed

static RAM.

(due to parallel processing) further enhances performance by allowing

variables to be stored in internal CPU registers, rather than slow main

memory.

this manner, performance levels not achievable with sequential computers

using compiled code will become a reality.

The small number of operands assigned to individual PES

By implementing a direct-execution parallel architecture in

60

APPENDIX A

DATA FLOW GRAPHS FOR ACSL CONSTRUCTS

The data flow graphs shown on the following pages represent the

data flow between PES in a parallel processing system. In all the

graphs, a vertex represents one PE and the directed arcs represent the

direction data flows between PES.

As illustrated by the graphs, very few of the construct routines

contain parallelism. The AMAX, AMIN, MAX, and MIN type constructs

contain parallelism such that the optimum number of PES used to evaluate

the functions depends on the number of operands. The integration

construct is implemented with a two processor parallel predictor-

corrector algorithm. It allows the prediction of the n+l value while at

the same time correcting for the n value.

A B S I A C O S I
AMAXO, A M A X I ,
A M I N O , A M I N I ,
MAXO, M A X I ,
M I N O . M I N I

A T A N f
cos 1
D E L A Y i I

BCKLSH 1
D B L I N T i I

D E R I V T i

A L O G 1
A S I N 1
B O U N D 1

I
I

I OEAD I

c
1 I

62

HARM t
FCNSW I
INTEG

(Pr ed i c t o r -
C o r r e c t o r)

L I M I N T i
MODINT
(Us ing

p r e d i c t o r -
c o r r e c t o r)

I D I M i
INTEG

(R u n g e - K u t t a)

PTR,
RTP

PULSE t
t SIN

TAN t

QNTZR t
SQRT

ZOH t

APPENDIX B

MICROPROGRAMMED ROUTINES FOR ACSL CONSTRUCTS

The microprogrammed ACSL routines shown follow standard AMD 29000

assembly language formats, except for the LOAD and STORE instructions

needed when loading or storing the FPU. Due to the recent introduction

of the AMD 29027 FPU into the marketplace, there was no standard format

available pertaining to the programming syntax of coprocessor LOAD or

STORE instructions when this thesis was written, so one was devised as

follows :

STORE FPU INST PMUX,QMUX,TMUX/INSTRUCTION/REGISTER WRITE

STORE FPU OPT OPERAND ill , OPERAND #2

STORE FPU OP OPERAND ill , OPERAND #2

LOAD FPU RES DESTINATION,RESULT SELECT

The AMD 29027 will be operated in a pipelined mode. The three

stage pipeline is represented by the three areas in the STORE FPU INST

operand field.

come from, the second area determines what operation is performed on the

data, and the third area selects the internal FPU register (if any) to

deposit results in. This STORE instruction does advance the pipeline.

The first area determines where the ALU operands will

The STORE FPU OPT indicates what operands to store in the R-TEMP

and S-TEMP registers in the FPU. The operand #1 (if any) will be stored

in the R-TEMP register, and operand H2 (if any) will be stored in the S-

TEMP register. This type of instruction does not advance the pipeline.

64

65

The STORE FPU OP indicates what data values to store in the R and S

registers of the FPU.

stores data in the same fashion as the STORE FPU OPT instruction, except

it deals with the R and S registers rather than the temporary registers.

This instruction does advance the pipeline and

The LOAD FPU RES instruction reads the F port of the AMD 29027.

The data read can be the least significant bits of the result, the most

significant bits of the results, the flag register, or the FPU status.

66

ABS

DESCRIPTION:
real floating point expression.

Absolute value of the argument expression x, where x is a

EXECUTION TIME (WORST CASE): 40nS
MEMORY WORDS REQUIRED: 1
INPUTS: X
OUTPUTS: Y
CODE :

AND Y,MSBCLR,X ;CLEAR THE MSB

67

I ACOS

DESCRIPTION: Returns the arc-cosine, ACOS (X), where x is a floating
point value between -1.0 and 1.0. Result is a real number in radians

I between 0 and PI.
I
I EXECUTION TIME (WORST CASE) : 1 4uS

MEMORY WORDS REQUIRED: 35
INPUTS: X
OUTPUTS: Y
CODE : I

STORE FPU OPT X,
STORE FPU INST R,,/-/-
STORE FPU INST -/P/-
STORE FPU INST RFO,RFO,/-/RFO ;STORE X IN RFO
STORE FPU INST -/P*Q/-
STORE FPU INST RFl,S,R/-/RF1 ;X SQUARED IN RF1
STORE FPU OP A5,A6
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/- /RF2;ACCWLATE IN RF2
STORE FPU OP A4,
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+PkQ/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A3
STORE FPU INST -/T+P*Q/ -
STORE FPU INST -/T+P*Q/-
STORE FPU INST RF 1, RF2, R/ - /RF2
STORE FPU OP A2
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A1
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RF 1 , RF2,1/ - /RF2
STORE FPU INST -/T+P$cQ/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFO,RF2,/-/RF2
STORE FPU INST -/P*Q/-
STORE FPU INST R,-,RF2/-/RF2
STORE FPU OP PI/2
STORE FPU INST -/P-T/- ;PI/2 - SERIES
STORE FPU INST -/-/F
LOAD FPU RES Y,F ;READ RESULT

;ACCUM fc X

68

AINT

DESCRIPTION:
value and the output Y is a l so a floating point value.

Integerize the argument X where X i s a f loat ing p o i n t

EXECUTION TIME (WORST CASE) : 28011s
MEMORY WORDS REQUIRED: 7
INPUTS: X
OUTPUTS: Y
CODE :

STORE FPU OPT X ;LOAD OPERAND TO FPU
STORE FPU INST , ,R/ - / - ;CONVERT TO INTEGER
STORE FPU INST -/INT(T)/- ;PUSH DATA THROUGH PIPE
STORE FPU INST ,,RFO/-/RFO
STORE FPU INST -/FP(T)/- ;CONVERT TO FLOATING PT.
STORE FPU INST -/-/F
LOAD FPU RES Y, F ;READ RESULT FROM FPU

ALOG

DESCRIPTION: Natural logarithm of real argument X where X is greater
than 0.

EXECUTION TIME (WORST CASE): 2.48uS

INPUTS: X
OUTPUTS: Y
CODE :

MEMORY WORDS REQUIRED: 48

;COMPUTE (X- 1) / (X+l)
STORE FPU OPT X,l
STORE FPU INST R,,S/-/-
STORE FPU INST -/P-T/-
STORE FPU INST R,,S/-/RF3
STORE FPU INST -/P+T/-
STORE FPU INST RFl,,/-/RFl

9

;PERFORM DIVISION(RFO=RF3/RFl, WITH MUXES SET TO RFO,RFO,/-/RFO)
;DIVISOR = RFl
;DIVIDEND = RF3
;QUOTIENT/RECIPROCAL = RFO
9

STORE FPU INST -/RECIP-SEED/-
STORE FPU INST RFO , RFl ,2/ - /RFO

;READY FOR FIRST ITERATION FOR RECIPROCAL DIVISION
;EVALUATE Xi+l = Xi*(2-B*Xi)

;SEED IN RFO

9

AGAIN: STORE FPU INST -/T-P*Q/-
STORE FPU INST -IT-P*Q/-
STORE FPU INST -/-/RF2 ;RF2=2-B*X(i)
STORE FPU INST RFO,RF2,/-/-
STORE FPU INST -/P*Q/-
JMPFDEC COUNT,AGAIN ;DO "COUNT" ITERATIONS (3)
STORE FPU INST RFO,RF1,2/-/RFO

STORE FPU INST RF3,RFO,/-/-

STORE FPU INST RFO,RFO,/-/RFO ;QUOTIENT IS IN RFO AND F

;RFO= X(i+l)
;MULTIPLY DIVIDEND BY

STORE FPU INST -/PnQ/ - DIVISOR.
9

;COMPUTE SERIES FOR ALOG
STORE FPU INST -/P*Q/-
STORE FPU INST RFl,S,R/-/RF1
STORE FPU OP A5,A6
STORE FPU INST -/T+PnQ/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RF1, RF2, R/ - /RF2 ;ACCUMULATE IN RF2
STORE FPU OP A4,
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+PftQ/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A3
STORE FPU INST -/T+P':Q/-

;Y SQUARED IN RF1

70

STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A2
STORE FPU INST -/T+PkQ/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A1
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,1/-/RF2
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFO,RF2,/-/RF2
STORE FPU INST -/PfcQ/-
STORE FPU INST RF2,2,/-/RF2
STORE FPU INST -/P*Q/-
STORE FPU INST -/-/F
LOAD FPU RES Y,F ;READ RESULT

71

AMAXO

DESCRIPTION:
integers and the output is a floating point value.

EXECUTION TIME (WORST CASE): (7"CNT t 21)*40nS
MEMORY WORDS REQUIRED: 19
INPUTS: J1, 52, 53, ... Jn
OUTPUTS: Y
PARAMETERS :
CNT = NUMBER OF OPERANDS - 1.
IPA = POINTING TO BEGINNING OF STRING
(ASSUME VARIABLES ARE IN GENERAL PURPOSE REGISTERS)

Determine the maximum argument where the inputs are

CODE :

AGAIN :

SKIP :

9

9

;WAIT FOR
HERE :

9

9

OR
CPLE
JMPT
MFSR
OR
ADD
JMPFDEC
MTSR

Y, IPA, 0
COND, IPA, Y
COND, SKIP
COND , IPAREG
Y, IPA, 0

CNT, AGAIN
IPAREG, COND

COND , COND , #O 1

STORE FPU OPT Y
STORE FPU INST ,,R/-/-
STORE FPU INST -/FP(T)/-
STORE FPU INST R F O , ,R/ - / R F O

RESULTS FROM OTHER PE
JMPF OPER , HERE
NOP

STORE FPU OP X
STORE FPU INST -/MAX P,T/-
STORE FPU INST -/-/F
LOAD FPU INST Y,F
STORE IOP , Y

;IF VALUE < MAX, JUMP

;POINT TO NEXT VALUE

;CONVERT TO FLOATING PT.

;SEND RESULT TO NEXT PE

72

AMAX1

DESCRIPTION:
p o i n t va lues and t h e ou tpu t is a f l o a t i n g p o i n t va lue .

EXECUTION TIME (WORST CASE): (lO*CNT + 21)*40nS

Return t h e maximum argument where t h e i n p u t s are f l o a t i n g

MEMORY WORDS REQUIRED: 19
INPUTS: X1, X2, X 3 , ... Xn
OUTPUTS: Y
PARAMETERS :
CNT = NUMBER OF OPERANDS - 1
IPA = POINTS TO START OF STRING
(ASSUME ALL OPERANDS ARE IN THE GENERAL
CODE :

OR Y, IPA, 0
STORE FPU OPT Y,
STORE FPU INST R,,/-/-
STORE FPU INST -/P/-
STORE FPU INST RFO,,R/-/WO

9

AGAIN : STORE FPU OP IPA
STORE FPU INST -/MAX P,T/-
STORE FPU INST R F O , ,R/-/RFO
MFSR COND , IPAREG

JMPFDEC CNT, AGAIN
MTSR IPAREG, COND

ADD COND, COND, HO 1

9

;WAIT FOR RESULTS FROM OTHER PE
HERE : JMPF OPER, HERE

NOP

STORE FPU OP X
STORE FPU INST -/MAX P,T/-
STORE FPU INST -/-/F
LOAD FPU INST Y,F
STORE IOP, Y

*

PURPOSE REGISTERS)

;INITIALIZE FPU ACCUM.

;LET FPU FIND MAXIMUM

;STORE NEW MAXIMUM

;IF NOT COMPARED ALL
;DO ANOTHER.

;SEND RESULT TO NEXT PE

73

AMINO

DESCRIPTION: Determine t h e minimum argument where t h e i n p u t s are
i n t e g e r s and t h e output is a f l o a t i n g point va lue .

EXECUTION TIME (WORST CASE): (7*CNT + 21)$<40nS
MEMORY WORDS REQUIRED: 19
INPUTS: 51, 52, 53, ... Jn
OUTPUTS: Y
PARAMETERS :
CNT = "MBER OF OPERANDS - 1.
IPA = POINTING TO BEGINNING OF STRING
(ASSUME VARIABLES ARE IN GENERAL PURPOSE REGISTERS)
CODE :

AGAIN :

SKIP :

9

9

9

OR
CPGE
JMPT
MFSR
OR
ADD
JMPFDEC
MTSR

Y, IPA, 0
COND, IPA, Y ;COMPARE CURRENT VALUE
COND, SKIP ;TO CURRENT MINIMUM.
COND, IPAREG
Y, IPA, 0
corn, COND , #O 1
CNT, AGAIN ;IF NOT THROUGH, JMP
IPAREG, COND ;POINT TO NEXT VALUE.

STORE FPU OPT Y ;CONVERT MINIMUM VALUE
STORE FPU INST ,,R/-/- ;TO FLOATING POINT.
STORE FPU INST -/FP(T)/-

STORE FPU INST RFO,,R/-/RFO

;WAIT FOR RESULTS FROM OTHER PE
HERE : JMPF OPER , HERE

NOP

STORE FPU OP X
STORE FPU INST -/MIN P,T/-
STORE FPU INST -/-/F
LOAD FPU INST Y,F
STORE IOP,Y ;SEND RESULT TO NEXT PE

9

9

7 4

AMIN1

DESCRIPTION: Return the minimum argument where the inputs are floating
point values and the output is a floating point value.

EXECUTION TIME (WORST CASE): (10*CNT + 21)*40nS
MEMORY WORDS REQUIRED: 19
INPUTS: X1, X2, X3, ... Xn
OUTPUTS: Y
PARAMETERS :
CNT = NUMBER OF OPERANDS - 1
IPA = POINTS TO START OF STRING
(ASSUME ALL OPERANDS ARE IN THE GENERAL PURPOSE REGISTERS)
CODE :

OR Y, IPA, 0 ;INITIALIZE FPU ACCUM.
STORE FPU OPT Y,
STORE FPU INST R,,/-/-
STORE FPU INST -/P/-
STORE FPU INST RFO,,R/-/RFO

9

AGAIN : STORE FPU OP IPA ;LET FPU FIND MINIMUM.
STORE FPU INST -/MIN P,T/-
STORE FPU INST RFO,,R/-/RFO
MFSR COND , IPAREG
ADD
JMPFDEC CNT, AGAIN ;IF NOT COMPARED ALL

;STORE NEW MINIMUM

COND , corn, I10 1

MTSR IPAREG, COND ;DO ANOTHER.
9

;WAIT FOR RESULTS FROM OTHER PE
HERE : JMPF OPER,HERE

NOP

STORE FPU OP X
STORE FPU INST -/MIN P,T/-
STORE FPU INST -/-/F
LOAD FPU INST Y,F
STORE IOP , Y ;SEND RESULT TO NEXT PE

9

9

75

AMOD

DESCRIPTION: Remainder of modulus, AMOD(Xl,X2), where the floating
point remainder of X1 divided by X2 is returned.

EXECUTION TIME (WORST CASE) : 1.611s
MEMORY WORDS REQUIRED: 26
INPUTS: X 1 , X2
OUTPUTS: Y
CODE :

MACRO FDIV(RFO , X 1 , X2)

STORE FPU INST -/ROUND T/-
STORE FPU INST R,RFO,/-/RFO
STORE FPU OP X 2
STORE FPU INST -/P*Q/-
STORE FPU INST R,,RFO/-/RFO
STORE FPU OP X2,
STORE FPU INST -/P-T/-
STORE FPU INST -/-/F
LOAD FPU RES Y,F

;DIVIDE X 1 BY X 2 AND
;RETURN RESULT IN RFO.
;ROUND RESULT TO LOWER
;WHOLE NUMBER.
;MULTIPLY ROUNDED RESULT
;WITH l/DIVISOR.

;SUBTRACT PRODUCT FROM
;DIVIDEND.

;READ THE REMAINDER.

76

AS IN

DESCRIPTION:
between -1.0 and 1.0, and the result is between -PI/2 and PI/2.

EXECUTION TIME (WORST CASE) : 1.24uS

The arc-sine of the real argument X is returned where x is

I MEMORY WORDS REQUIRED: 31
I INPUTS: X
1 OUTPUTS: Y

CODE :

STORE FPU OPT X,
STORE FPU INST -/P/-
STORE FPU INST RFO,RFO,/-/RFO ;X IN RFO
STORE FPU INST -/P*Q/-
STORE FPU INST RFl,S,R/-/RF1 ;X SQUARED IN RF1
STORE FPU OP A5,A6
STORE FPU INST -/T+P*Q/-
STORE FFU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A4,
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A3
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A2
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A1
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,l/-/RF2
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+Pf:Q/-
STORE FPU INST RFO,RF2,/-/RF2
STORE FPU INST -/P*Q/-
STORE FPU INST -/-/F
LOAD FPU RES Y,F

;ACCUM f: X

7 7

ATAN

DESCRIPTION: Returns the arc-tangent of the real value X.

EXECUTION TIME (WORST CASE): 3.08uS
MEMORY WORDS REQUIRED: 104
INPUTS: X
OUTPUTS: Y
CODE :

;CHECK FOR X>1
STORE FPU OPT X,l
STORE FPU INST R,,S/-/-
STORE FPU INST -/COMPARE P,T/-
STORE FPU INST -/-/FLAG
LOAD FPU RES COMPREG,FLAG

;CHECK > FLAG
AND
CPEQ
JMPT COMPTEST, XOFR
STORE FPU OPT X,-1
STORE FPU INST R, , S / - / -
STORE FPU INST -/COMPARE P,T/-
STORE FPU INST -/-/FLAG
LOAD FPU RES COMPREG,FLAG

AND COMPREG, COMPREG , #08H
CPEQ COMPTEST , COMPREG, #08H
JMPT COMPTEST,XOFR

STORE FPU OPT X,
STORE FPU INST R,,/-/-
STORE FPU INST -/P/-
STORE FPU INST RFO,RFO,/-/RFO ;X IN RFO
STORE FPU INST -/P$:Q/-
STORE FPU INST RFl,S,R/-/RF1 ;X SQUARED IN RF1
STQRE FPU OP A5,A6
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RF 1, RF2, R/ - /RF2
STORE FPU OP A4,
STORE FPU INST -/T+PkQ/-
STORE FPU INST -/T+P$:Q/-
STORE FPU INST RF1, RF2, R/ - /RF2
STORE FPU OP A3
STORE FPU INST -/T+P$:Q/-
STORE FPU INST -/T+P$:Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A2
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+Pf:Q/-
STORE FPU INST RF1, RF2, R/ - /RF2
STORE FPU OP A1
STORE FPU INST -/T+Pf:Q/-

COMPREG , COMPREG , # 1 OH
COMPTEST , COMPREG , I/ 1 OH

;CHECK < FLAG

;X IS BETWEEN -1 AND +1

STORE FPU INST -/T+P*Q/-
STORE FPU INST RF1 ,RF2,1/-/RF2
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFO,RF2,/-/RF2
STORE FPU INST -/P*Q/-
STORE FPU INST -/-/F
LOAD FPU RES Y,F
JMP END
NOP

;ACCUM J(X

XOFR :
COMPUTE (((((((B7)Y+B5)Y+B4>YtB3)Y+B2)Y+Bl)Y+l)Z

MACRO RFO=RECIP(X) ;PUT 1/X IN RFO

STORE FPU INST RFO,RFO,/-/-
STORE FPU INST -/PnQ/-
STORE FPU INST RFl,S,R/-/RF1

STORE FPU OP B5,B6 ;COMPUTE SERIES
STORE FPU INST -/T+P*Q/ -
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP B4,
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP B3
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP B2
STORE FPU INST -/TtP*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RF 1, RF2, R/ - /RF2
STORE FPU OP B1
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RF1, RF2,1/ - /RF2
STORE FPU INST -/T+P:':Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFO,RF2,/-/RF2
STORE FPU INST -/P:':Q/-
STORE FPU INST R,,S/-/RFO
STORE FPU OP X, 1
STORE FPU INST -/COMPARE P,T/-
STORE FPU INST R,,RFO/-/F ;SEE IF X > 1
LOAD FPU RES COMP,FLAG
AND COMP , COMP, 10H ;CHECK > FLAG
CPEQ COMP , COMP , # 1 OH
JMPT COMP,SKIPNEG ;IF X > 1, JMP
SOP
OR PI02,NEGATE,PI02 ;MAKE PI/2 NEGATIVE

;PUT l/(X;tX) IN RF1
9

;ACCUM f: X
;RESULT IN RFO

79

SKIPNEG: STORE FPU OP PI02,
STORE FPU INST -/P-T/-
STORE FPU INST - / - / F
LOAD FPU RES Y,F

END :
;READ RESULT

BCKLSH

DESCRIPTION: Used to implement the backlash or hysteresis operator.

EXECUTION TIME (WORST CASE): 960x1s
MEMORY WORDS REQUIRED: 28
INPUTS: X
OUTPUTS: Y
PARAMETERS :
2DL = WIDTH OF BACKLASH
IC = INITIAL CONDITION ON THE OUTPUT.
CODE :

STORE FPU OPT X,Y
STORE FPU INST R,,S/-/-
STORE FPU INST -/P-T/-
STORE FPU INST -/-/F
LOAD FPU RES DIFF,F
AND TEMP1, DIFF, CONSTl
AND DIFF, DIFF, CONST2
STORE FPU OPT DIFF, 2DL
STORE FPU INST R, , S / - / -

;COMPUTE X - Y

;READ RESULT
;REM STATUS ABOUT X-Y
;TAKE ABS OF DIFFERENCE
;COMPARE DIFF TO WIDTH.

STORE FPU INST -/COMPARE P,T/-
STORE FPU INST -/-/FLAG
LOAD FPU RES STATUS, FLAG
AND STATUS, STATUS, 10H ; CHECK GREATER THAN FLAG
CPEQ COND, STATUS, 10H ; IF WITHIN WIDTH, QUIT
JMPF COND, END
NOP

;INPUT/OUTPUT DIFFERENCE OUT OF RANGE, SO ADJUST OUTPUT
JMPF TEMP1 , POS ;CHECK IF + OR - DIFF.
STORE FPU OPT X,2DL ;IN EITHER CASE, LOAD FPU
STORE FPU INST R,,S/-/-
STORE FPU INST -/P+T/-
STORE FPU INST -/-/F
LOAD FPU RES Y,F
JMP END
NOP

;COMPUTE X + 2DL

80

9

POS : STORE FPU INST R,,S/-/- ;COMPUTE X - 2DL
STORE FPU INST -/P-T/-
STORE FPU INST -/-/F
LOAD FPU RES Y,F

9

END :

BOUND

DESCRIPTION:
particular range.

EXECUTION TIME (WORST CASE): 800nS
MEMORY WORDS REQUIRED: 23
INPUTS: X
OUTPUTS: Y
PARAMETERS :
LL = LOWER LIMIT
UL = UPPER LIMIT
CODE :

The bound function is used to limit a variable to a

OR Y, x, l l00 ;ASSUME IN PROPER RANGE
STORE FPU OPT X, LL ;COMPARE X AND LL
STORE FPU INST R,,S/-/-
STORE FPU INST -/COMPARE P,T/-
STORE FPU INST -/-/FLAG
LOAD FPU RES COMP, FLAG
AND COMP, COMP, 10H ;CHECK > FLAG
CPEQ COMP, COMP, 10H
JMPT COMP, SKIPIT
NOP
OR Y, LL, 00 ;SET OUTPUT TO LL, QUIT
JMP END
NOP

9

SKIPIT: STORE FPU OPT X,UL ;COMPARE X AND UL
STORE FPU INST R, , S / - / -
STORE FPU INST -/COMPARE P,T/-
STORE FPU INST -/-/FLAG
LOAD FPU RES COMP,FLAG
AND COMP, COMP, 10H ;CHECK > FLAG
CPEQ COMP, COMP, 10H
JMPF COMP, END
NOP
OR Y, UL, 00 ;SET OUTPUT TO UL

END:

82

cos
DESCRIPTION: Returns the cosine of the argument X where the result will
be between -1.0 and 1.0 and the argument is in radians.

EXECUTION TIME (WORST CASE) : 1.1211s
MEMORY WORDS REQUIRED: 28
INPUTS: X
OUTPUTS: Y
CODE :

STORE FPU OPT X,
STORE FPU INST R,R,/-/-
STORE FPU INST -/P*Q/-
STORE FPU INST RFl,S,R/-/RF1
STORE FPU OP A5,A6 ;COMPUTE SERIES.
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2;ACCUUTE IN RF2.
STORE FPU OP A4,
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/ -
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A3
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A2
STORE FPU INST -/T+P$:Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RF 1, RF2, R/ - /RF2
STORE FPU OP A1
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+PnQ/-
STORE FPU INST RFl,RF2,1/-/RF2
STORE FPU INST -/T+P:kQ/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/-/F
LOAD FPU RES Y,F ;READ RESULT

;X SQUARED IN RF1.

83

DBLINT

DESCRIPTION: Provided to limit the second integral of an acceleration
I (displacement).
I

EXECUTION TIME (WORST CASE): 72011s
MEMORY WORDS REQUIRED: 22
INPUTS: XDD (ACCELERATION)
OUTPUTS: X (DISPLACEMENT), XD (VELOCITY)
PARAMETERS :
XIC = INITIAL CONDITION ON DISPLACEMENT
XDIC = VELOCITY INITIAL CONDITION
LL = LOWER DISPLACEMENT LIMIT
UL = UPPER DISPLACEMENT LIMIT
CODE :

(TO BE INSERTED AT THE END OF THE INTEGRATION ROUTINE)

STORE FPU OPT X,UL
STORE FPU INST R, ,S/-/-
STORE FPU INST -/MAX P,T/-
STORE FPU INST - / -/F
LOAD FPU RES GPR1,F
CPEQ COND, GPR1, X
JMPF COND, SKIP
NOP
OR X,UL,OO
AND XD,XD,oo
JMP END
NOP

STORE FPU INST R,,S/-/-
STORE FPU INST -/MIN P,T/-
STORE FPU INST - / -/F
LOAD FPU RES GPR1,F
CPEQ COND, GPRL, X
JMPF END
NOP
OR X,LL, 00
AND xD,XD,oo

SKIP : STORE FPU OPT X,LL

END :

;FIND MAXIMUM OF X AND UL

;READ RESULT OF OPERATION
;SEE WHICH GREATER
;IF X<UL, SKIP

;MOVE UL TO X
;MAKE VELOCITY = 0

;FIND MINIMUM BTWN X, LL

;SEE IF x IS MrNrm
;IF NOT, SKIP

;MAKE OUTPUT LL
;MAKE VELOCITY 00

DEAD

DESCRIPTION: Used to create dead space in a system.
limits, output is zero.

EXECUTION TIME (WORST CASE) : 840nS
MEMORY WORDS REQUIRED: 29
INPUTS: X
OUTPUTS: Y
PARAMETERS :
LL = LOWER LIMIT
UL = UPPER LIMIT
CODE :

If X

STORE FPU OPT X,UL
STORE FPU INST R, , S / - / -
STORE FPU INST -/MAX P,T/
STORE FPU INST -/-/F

;FIND THE G

LOAD FPU OP GPR,F
CPEQ COND , GPR , X
JMPT COND , CVRUL
NOP

;NOW CHECK TO SEE IF X IS LESS THAN LL
STORE FPU OPT X,LL
STORE FPU INST R, ,S/-/-
STORE FPU INST -/MIN P,T/-
STORE FPU INST -/-/F
LOAD FPU RES GPR, F
CPEQ COND, GPR, X
JMPT COND , UNDLL
NOP

JMP END
AND Y,Y,OO

;DEAD SPACE

9

OVRUL : STORE FPU OPT X,UL
STORE FPU INST R,,S/-/-
STORE FPU INST -/P-T/-
STORE FPU INST -/-/F
JMP END
LOAD FPU RES Y, F

9

UNDLL : STORE FPU OPT X,LL
STORE FPU INST R, ,S/-/-
STORE FPU INST -/P-T/-
STORE FPU INST -/-/F
LOAD FPU RES Y, F

EATER

is between

UE

;READ RESULT
;SEE IF X IS GREATER
;IF X > UL, JMP

;READ RESULT FROM FPU
;SEE IF X LESS THAN LL

;MAKE OUTPUT 0

;CALCULATE X - UL

;READ RESULT INTO OUTPUT

;COMPUTE X - LL

;READ RESULT INTO OUTPUT
9

END :

85

DELAY

DESCRIPTION: Used t o model de l ays through such o b j e c t s as p ipes . A
2%MX long a r r a y is c r e a t e d t o model the delay and is w r i t t e n i n a
c i r c u l a r f a sh ion . It is i n i t i a l l y f i l l e d w i t h t h e v a l u e IC. The
p o i n t e r t o the ou tpu t va lues is set a f ixed l e n g t h from the p o i n t e r t o
t h e i n p u t v a l u e s du r ing t h e preprocess ing s t a g e t o r e p r e s e n t t h e
a p p r o p r i a t e d e l a y pe r iod .

EXECUTION TIME (WORST CASE): 480nS
MEMORY WORDS REQUIRED: 12
INPUTS: X
OUTPUTS: Y
PARAMETERS :
IC - INITIAL CONDITION OF OUTPUT UNTIL FIRST DELAY PERIOD.
"DL - THE DELAY BETWEEN THE INPUT AND THE OUTPUT.
NMX - A CONSTANT REPRESENTING THE NUMBER OF CALCULATION INTERVALS
IN THE DELAY.
START - STARTING ADDRESS OF TABLE.
MAXPTR - LAST ADDRESS IN TABLE.
CODE :

STORE
ADD
CPEQ
JMPF
NOP
OR

SKIPCLR: LOAD
ADD
CPEQ
JMPF
NOP
OR

SKIP :

X, INPPTR
INPPTR, INPPTR, !IO 1
COND , INPPTR , MAXPTR
COND, SKIPCLR

INPPTR, START, /IO0

OUTPTR , OUTPTR , HO 1

COND, SKIP

Y , OUTPTR

COND,OUTPTR,MAxPTR

OUTPTR, START, !IO0

;STORE NEW INPUT
;POINT TO NEXT INPUT
;SEE IF AT END OF TABLE
;DON'T RESET IF NOT

;RESET STARTING ADDRESS
;READ NEW OUTPUT VALUE
;POINT TO NEW OUTPUT
;SEE IF AT END

;RESET OUTPUT POINTER

86

DERIVT I

DESCRIPTION: Implements a first order derivative function in the form: I

I y = (Xnew - Xold)/(Tnew - Told)
I

I
I EXECUTION TIME (WORST CASE): 1.48~~
, MEMORY WORDS REQUIRED: 23

INPUTS: X
I OUTPUTS: Y

CODE :
I

; COMPUTE XNEW - XOLD
STORE FPU OPT X,XOLD
STORE FPU INST R,,S/-/-
STORE FPU INST -/P-T/-
STORE FPU INST R,,S/-/RF7

STORE FPU OP T,TOLD
STORE FPU INST -/P-T/-
STORE FPU INST -/-/RF6

MACRO F=FDIV(RF7,RF6)

; COMPUTE TNEW - TOLD

; COMPUTE X/T

LOAD FPU RES Y,F
OR TOLD, T, 00
OR XOLD , X , 00

;READ ANSWER FORM FPU
;UPDATE OLD TIME VALUE
;UPDATE OLD X VALUE

87

DIM

DESCRIPTION: Positive difference function, DIM(Xl,X2). If X1 is
greater than X2, returns Xl-X2, otherwise returns 0 .

EXECUTION TIME (WORST CASE) : 400nS
MEMORY WORDS REQUIRED: 10
INPUTS: X1, X2
OUTPUTS: Y
CODE :

STORE FPU OPT X1,X2 ;COMPUTE Xl-X2 AND COMP.
STORE FPU INST R,,S/-/-
STORE FPU INST -/COMPARE P,T/-
STORE FPU INST -/-/F
LOAD FPU RES COMP,FLAG
AND COMP , COMP , # 10 ;CHECK G.T. FLAG
CPEQ COMP , COMP , I\ 10 9

JMPT COMP , END ;IF X1 GT X2, JMP
LOAD FPU RES Y,F ;READ Xl-X2
AND Y9Y90 ;CLEAR OUTPUT

END:

EXP

DESCRIPTION: Returns the natural exponential of the argument.

EXECUTION TIME (WORST CASE): 1 . 2 4 ~ ~
MEMORY WORDS REQUIRED: 31
INPUTS: X
OUTPUTS: Y
CODE :

;IMPLEMENT THE SERIES:
;EXP(X)=l+X(l+X(AO+X(Al+X(A2+X(A3+X(A4+X(A5)))))))

STORE FPU OPT X, ;PUT X IN RFO
STORE FPU INST R,,/-/-
STORE FPU INST -/P/-
STORE FPU INST RFO,R,S/-/RFO
STORE FPU OP A5,A4
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFO ,RF1 ,R/ -/RF1
STORE FPU OP A3,
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFO,RFl,R/-/RF1
STORE FPU OP A2,
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFO,RFl,R/-/RF1
STORE FPU OP A1
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFO,RFl,R/-/RF1
STORE FPU OP AO,
STORE FPU INST -/T+P*Q/-
STORE FPU INST - /T+P*Q/ -
STORE FPU INST RFO,RFl,l/-/RFl
STORE FPU INST -/T+P:"Q/-
STORE FPU INST -/TtP*Q/-
STORE FPU INST RFO , RFl,l/ - /RF 1
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/-/F
LOAD FPU RES Y,F ;READ RESULT

;ACCUMULATE IN RF1

89

EXPF

DESCRIPTION:
constant ON.
created, and if ON is false, a decaying exponential from 1.0 to zero is
implemented.

Implements a switchable exponential depending on the
If ON is true, a rising exponential from zero to 1.0 is

EXECUTION TIME (WORST CASE): 1.56uS
MEMORY WORDS REQUIRED: 39
INPUTS: ON - SWITCH FUNCTION
OUTPUTS: Y
PARAMETERS :
TA - TIME CONSTANT
TO - TIME VALUE CORRESPONDING TO Y(0).
STAGE]
T - CURRENT TIME VALUE
CODE :

IC - Y(0)
[EVALUATED IN THE PREPROCESSING

; EVALUATE FXP[-TA*T]

STORE FPU OPT T,TO
STORE FPU INST R, , S / - / -
STORE FPU INST -/P+T/- ;CALCULATE T + TO
STORE FPU INST R,RFO,/-/RFO
STORE FPU OP TA,
STORE FPU INST -/(-P)*Q/-
STORE FPU INST RFO , R, S/ - /RFO

;CALCULATE -TA*(T + TO)

 EVALUATE EXP(RFO) I
STORE FPU OP A5,A4 ;EVALUATE EXP SERIES
STORE FPU INST -/T+P*Q/-
STORE FPU INST - /T+P*Q/ -
STORE FPU INST RFO,RFl,R/-/RFl
STORE FPU OP A3,
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFO,RFl,R/-/RFl
STORE FPU OP A2,
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFO,RFl,R/-/RFl
STORE FPU OP A1
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P"Q/-
STORE FPU INST RFO,RFl,R/-/RF1
STORE FPU OP AO,
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFO,RFl,l/-/RFl
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P$<Q/-
STORE FPU INST RFO,RFl,l/-/RFl
STORE FPU INST -/T+P*Q/-

90

JMPF ON, OFF ; I F OFF, SKIP
STORE FPU INST -/T+P*Q/-

9

STORE FPU INST l,-,RFO/-/RFO
STORE FPU INST - /P-T/-
STORE FPU INST - / - / F
LOAD FPU RES Y,F ;OUTPUT l-EXP(X)
JMP END
NOP
STORE FPU INST RFO,, / - / -
STORE FPU INST - / P / -
STORE FPU INST - / - / F
LOAD FPU RES Y,F

OFF :

; OUTPUT EXP (X)
END:

91

FCNSW

DESCRIPTION: I m p l e m e n t s a func t iona l s w i t c h w h e r e :

Y = x1 I F P < 0 ,
Y = x2 I F P = 0 , and
Y = x3 I F P > 0.

EXECUTION TIME (WORST CASE): 600nS
MEMORY WORDS REQUIRED: 18
INPUTS: P
OUTPUTS: Y
CODE :

STORE FPU OPT P , - ;COMPARE P TO 0
STORE FPU I N S T R , ,O/-/ -
STORE F P U I N S T -/COMPARE P ,T/ -
STORE F P U I N S T - / - / F L A G
LOAD F P U RES CHK,FLAG
AND C H K l , CHK, # 2 0 H ;CHECK '= ' FLAG
CPEQ
JMPF CHKl ,NEXT
OR Y,X2,00
JMP END
NOP

CPEQ CHKl , CHKl , # l O H 9

JMPF C H K 1 , N E x T l
OR Y ,X3,00 ;MAKE OUTPUT X 3
J M P END
NOP

CHKl , CHKl , # 2 0 H

NEXT : AND CHKl,CHK,#lOH ;CHECK ' > ' FLAG

NEXT1 : OR Y ,xl ,oo ;ASSUME <
END :

92

GAUSS t

DESCRIPTION: Generates a normally distributed random variable with mean
I
I M and standard deviation S.

EXECUTION TIME (WORST CASE): 9.8uS
INSTRUCTIONS EXECUTED (WORST CASE): 153
MEMORY WORDS REQUIRED: 21
INPUTS: NONE
OUTPUTS: Y
PARAMETERS :
M - MEAN
S - STANDARD DEVIATION
CODE :

;
; N(K) IS A RANDOM NUMBER BETWEEN 0 AND 1.

Y = M + S"Z WHERE Z = SUMMATION (K=l TO 12) OF N(K) - 6.

STORE FPU INST O , , / - / -
STORE FPU INST -/P/-
STORE FPU INST R,,S/-/RF1 ;INIT. ACCUM. REG.
OR COUNT,ZER0,#012D ;INITIALIZE COUNT REG.

AGAIN : LOAD N , RDNPTR ;READ NEW RANDOM "MBER
ADD
CPEQ COND,RDNPTR,MAXPTR ;SEE IF AT END
JMPF COND, SKIP
NOP
OR RDNPTR,START,#OO ;RESET OUTPUT POINTER

STORE FPU INST -/P-T/-
STORE FFU INST RFO,,RFl/-/RFO ;STORE N-6
STORE FPU INST -/P+T/- ;ACCUMULATE VALUES
JMPFDEC COUNT,AGAIN ;IF NOT DONE 12 TERMS,

STORE FPU INST R,,S/-/RF1

;INITIALIZE RF1 TO 0

RDNPTR, RDNPTR, HO 1 ; POINT TO NEW R . N .

SKIP : STORE FPU OPT N,SIX ;COMPUTE N-6

;DO ANOTHER.

9

;NOW COMPUTE Y = M + S*RF1
STORE FPU OP S ,M ;STORE M E A N AND S.D.
STORE FPU INST -/P"Q+T/-
STORE FPU INST -/P*Q+T/-
STORE FPU INST -/-/F
LOAD FPU RES Y,F ;READ ANSWER

;COMPUTE S*Z+M

HARM

DESCRIPTION: A sinusoid drive function can be created by this
instruction which results in the fo l lowing:

y = 0.0 t < tz,
y = SIN[w*(t-tz) i- P I

EXECUTION TIME (WORST CASE): 1.88uS
MEMORY WORDS REQUIRED: 47
INPUTS: NONE
OUTPUTS: Y
PARAMETERS :
TZ - DELAY IN SECONDS
W - FREQUENCY IN RAD/SEC
P - PHASE SHIFT IN RADIANS
T - CURRENT TIME
CODE :

STORE FPU OPT TZ,T ;COMPARE TIME TO DELAY
STORE FPU INST R,,S/-/-
STORE FPU INST -/COMPARE P,T/-
STORE FPU INST -/-/FLAG
LOAD FPU RES CHK,FLAG-REGISTER
AND CHK , CHK , 11 1 OH
CPEQ CHK , CHK, f1lOH
JMPT END
AND Y , X , H O O ;CLEAR OUTPUT

STORE FPU OPT T,TZ
STORE FPU INST R, , S / - / -
STORE FPU INST -/P-T/-
STORE FPU INST R,RFO,/-/RFO
STORE FPU OP W,
STORE FPU INST -/P-T/-
STORE FPU INST RFO, ,R/-/RFO
STORE FPU OP P,
STORE FPU INST -/P+T/-

STORE FPU INST RFO,RFO,/-/RFO ;X IN RFO
STORE FPU INST -/P*Q/-
STORE FPU INST RFl,S,R/-/RF1 ;X SQUARED IN RF1
STORE FPU OP A5,A6
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RF1, RF2, R/ - /RF2
STORE FPU OP A 4 ,
STORE FPU INST -/T+Pf:Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RF1, RF2, R/ - /RF2
STORE FPU OP A 3
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RF1 ,RF2,R/ -/RF2

;CHECK GREATER THAN FLAG

;COMPUTE THE SINE FUNCTION

;SINE ROUTINE, X IN RFO

STORE FPU OP A2
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RFZ,R/-/RF2
STORE FPU OP A1
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,1/-/RF2
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFO,RF2,/-/RF2

STORE FPU INST -/-/F
LOAD FPU RES Y,F

STORE FPU INST -/P*Q/- ;GCCUM * x

95

IABS

DESCRIPTION: Returns absolute value of an integer.

EXECUTION TIME (WORST CASE): 200nS
MEMORY WORDS REQUIRED: 5
INPUTS : J
OUTPUTS: N
CODE :

STORE FPU OPT J, ;LET THE FPU COMPUTE
STORE FPU INST R,,/-/-
STORE FPU INST -/IABS(P)/- ;OF THE 2's COMP. INT.
STORE FPU INST -/-/F
LOAD FPU RES N,F

;THE ABSOLUTE VALUE

96

IDIM

DESCRIPTION: Returns integer positive difference when:

N = J1 - 52 Jl>J2
N = O J2>J1.

EXECUTION TIME (WORST CASE): 160nS
MEMORY WORDS REQUIRED: 4
INPUTS: J1, 52
OUTPUTS: N
CODE :

SUBR DIFF,Jl,J2
JMPT DIFF, SKIP
AND
OR

N , X , #OO
N , DIFF , #OO

SKIP :

;SUBTRACT 52 FROM J1
;IF NEG, CLEAR AND JMP
;CLEAR OUTPUT
;LOAD OUTPUT

97

INT

DESCRIPTION: Integerization of a real floating point argument.

EXECUTION TIME (WORST CASE): 200nS
MEMORY WORDS REQUIRED: 5
INPUTS: X
OUTPUTS: N
CODE :

STORE FPU OPT X, ;LET FPU CONVERT TO INT.
STORE FPU INST , , R / - / -
STORE FPU INST -/INT(T)/-
STORE FPU INST -/-/F
LOAD FPU RES N,F ;READ RESULT

98

INTEG

DESCRIPTION: Performs an integration of a state variable using one of
several integration routines. A fourth order Runge-Kutta method and a
parallel predictor-corrector method will be shown. The parallel
predictor-corrector method will be used to demonstrate improvements in
execution speed resulting from parallel algorithms, and the Runge-Kutta
method will show how a traditionally sequential technique can be
improved with a parallel processing architecture (as well as providing
starting values for the predictor-corrector method). The coefficients
(Kl-K4) required in the Runge-Kutta integration method will be computed
in parallel for all state variables causing a system with N equations to
execute in approximately the same amount of time as a sequential system
with one equation.

The integration will be programmed to execute in real time, up to a
maximum calculation interval. The routine will use the real-time clock
values as the time variable and will update the state variables every
h seconds. For example, if h = .01 the routine will calculate a new
value of X every 10 milliseconds.
I 1 11

99

RUNGE-KUTTA INTEGRATION METHOD:

DESCRIPTION: For a program with N integrations, one integration will be
allocated to a cluster of processing elements (PES). The cluster will
be responsible for calculating the coefficients for its state variable
and evaluating the derivative function as necessary. If the derivative
function is sufficiently complex, the allocater may divide the function
among one or more PES in the cluster to improve execution speed.
general case for computing the integration is as follows:

The

Given : X' = F(t,x,y, ..., z) , X(O)=C
find: X(i+l) = X(i) + K where

K = 1/6 * (K1 + 2K2 + 2K3 + K4),
K1 = h*F(t(i) ,x(i) ,y(i), . . . , z(i)),
K2 = h*F(t(i)+.5h, x(i)+.5K1, y(i)+.5J1, . . . , z(i)+.5M1),
K3 = h*F(t(i)+.5h, x(i)+.5K2, y(i)+.5J2, . . . , z (i)+.5M2),
K4 = h*F(t(i)+h, x(i)+K3, y(i)+J3, ... , z(i)+M3).

The coefficients Jn, ... ,Mn will be computed in parallel by the cluster
assigned to that particular integration. This would normally be done in
a sequential manner thus making the execution time proportional to the
number of simultaneous equations being integrated in the system.

EXECUTION TIME (WORST CASE): 3.28uS + 4*(derivative function evaluation
time)
MEMORY WORDS REQUIRED: 43 + 4*(derivative function expression)
INPUTS: X, Y, ... , Z (STATE VARIABLES)
OUTPUTS: X (INTEGRATED VARIABLE)
CODE :

;FPU REGISTER ASSIGNMENTS:
;RFO - TEMP. WORKSPACE
;RF5 -
;RF6 -
;RF7 -
9

HERE1 :

; EVALU.

9

; STORE

9

CURRENT VALUE OF X (STATE VARIABLE)
ACCUMULATION OF K
H (STEP SIZE)

JMPF OPER,HEREl ;WAIT FOR OPERANDS
9

TE THE DERIVATIVE FUNCTION
MACRO RFO=FUNCT(T,X,Y,..,Z>

STORE FPU INST -/P*Q/- ;DERIV $: H
RESULT IN ACCUMULATION REG. AND RFO

STORE FPU INST RF0,.5,/-/RFO,RF6
STORE FPU INST -/P*Q/- ;DIVIDE K l / 2
STORE FPU INST RF5,,RFO/-/RFO ;STORE K1/2 IN RFO
STORE FPU INST -/P+T/- ;CALCU. X(i) + .5f:K1
STORE FPU INST .5 ,RF7, R/ - / F ; STORE RESULT
LOAD FPU RES TEMP,F ;READ RESULT

;SEND X(i)+.5Kl TO 1/0 PROCESSOR FOR TRANSMISSION TO OTHER PES IN
; SYSTEM.

STORE IOP ,TEMP

100

9

9

HERE2 :

; EVALUATE
9

Y

JMPF OPER, HERE2 ;WAIT FOR OPERANDS

DERIVATIVE FUNCTION
MACRO RFO=FUNCT(T, X+.5K1, Y+.5J1,. . . , Z+. 5M1)
STORE FPU INST -/P*Q/-
STORE FPU INST RFOY2,RF6/-/RFO; K2 = DERIV*H IN RFO

;COMPUTE K2 = DERIV.":H

STORE FPU INST -/P*Q+T/-
STORE FPU INST -/PkQ+T/-
STORE FPU INST RF0,.5,/-/RF6
STORE FPU INST -/P*Q/-
STORE FPU INST RFS,,RFO/-/RFO
STORE FPU INST -/P+T/-
STORE FPU INST -/-/F
LOAD FPU RES TEMP,F
STORE IOP ,TEMP

; K2*2 + ACC
;STORE NEW ACCUM VALUE
;DIVIDE K2/2
;STORE K2/2
;CALCU. X (i) + .5+K2
;STORE RESULT
;READ RESULT
;SEND X(i)+.5K2 TO 1/0

;PROCESSOR FOR TRANSMISSION TO OTHER PES IN SYSTEM.
Y

HERE3 : JMPF OPER,HERE3 ;WAIT FOR OPERANDS

;EVALUATE NEW DERIVATIVE VALUE
9

MACRO RFO=FUNCT(T, X+.5K2, Y+.5J2, ..., Z+.5M2)
Y

STORE FPU INST -/P*Q/- ;COMPUTE K3 = DERIV.$:H
STORE FPU INST RF0,2,RF6/-/RFO; K3 = DERIV*H IN RFO
STORE FPU INST -/P*Q+T/- ; K3*2 + ACC
STORE FPU INST -/P*Q+T/ -
STORE FPU INST RFS,,RFO/-/KF6 ;STORE NEW ACCUMULATOR
STORE FPU INST -/P+T/- ;CALCU. X(i) + K3
STORE FPU INST RF7,,R/-/F
LOAD FPU RES TEMP,F ;READ RESULT
STORE IOP , TEMP ;SEND X(i)+K3 TO 1/0

;STORE RESULT

;PROCESSOR FOR TRANSMISSION TO OTHER PES IN SYSTEM.
9

HERE4 : JMPF OPER , HERE4 ;WAIT FOR NEW OPERANDS
Y

9

;EVALUATE DERIVATIVE FUNCTION
MACRO RFO=FUNCT(T,X+K3,YtJ3, ..., Z+M3)
STORE FPU INST -/P*Q/- ;K4 = DER1Vf:H
STORE FPU INST RFO,,RF6/-/RFO ;ACCUMULATE K4
STORE FPU INST -/P+T/- ; ACCUMULATE
STORE FPU INST R,RF6,/-/RF6 ;K IS ALMOST COMPLETE!
STORE FPU OP (1/61 ;DIVIDE K BY 6
STORE FPU INST -/P*Q/-
STORE FPU INST RF6,,RFS/-/RF6 ;K IS IN RF6
STORE FPU INST -/P+T/- ;CALCU. X (i) + K
STORE FPU INST -/-/RF5 ;STORE X(i+l)

LOAD FPU RES TEMP,F ;READ NEW STATE VARIABLE
STORE IOP ,TEMP ;SEND X (i + l) TO 1/0

; NEW STATE VARIABLE VALUE IS IN RF5

;PROCESSOR FOR TRANSMISSION TO OTHER PES IN SYSTEM.

101

PARALLEL PREDICTOR-CORRECTOR METHOD:

DESCRIPTION:
for solving differential equations will be programmed using the
following equations:

A parallel form of the classic predictor-corrector method

Xp(n+l) = xc(n-1) + 2*hkF(T(n), Xp(n>, . . ,zp(n)), and
Xc(n) = Xc(n-1) + hk.5*(F(T(n), Xp(n), . ,z(n)) +

F(T(n-l),Xc(n-l), . . . ,Zc(n-l)))
where Xc is the corrected value and Xp is the predicted value.

Using this form allows the prediction of the n+l value while correcting
the n value.
concurrently.
for the predictor and one for the corrector.
method, one integration will be allocated to a cluster of PES thus
allowing complex functions to be evaluated with a high degree of intra-
cluster processor communication with out degrading the overall system
communication.

Both the prediction and correction can be done
Two PES will be employed in solving the equations, one

As in the Runge-Kutta

Notice that the term F(T(n),Xp(n), ..., Zp(n)) is present in both the
predictor and the corrector equations. If the derivative is relatively
simple, the corrector PE simply re-computes the derivative function;
otherwise, the derivative function computed by the predictor PE is sent
to the corrector PE for use in its equation.
high efficiency since the corrector still must compute the derivative at
n-1 using predicted values; therefore, the corrector couid compute the
derivative at n-1 while the predictor computes the derivative at n using
the predicted values making the only inefficiency present the
communication delay time for the transfer of Fp(n).

This method would allow

PREDICTOR PROGRAM:

EXECUTION TIME (WORST CASE): 960nS + function evaluation time
MEMORY WORDS REQUIRED: 14 + derivative function
INPUTS: X,Y, ..., Z (STATE VARIABLES)
OUTPUTS: XPN+1
PARAMETERS :
XCN-1 - CORRECTED VALUE OF
XPN - PREDICTED VALUE OF X
XPN+l - PREDICTED VALUE OF
CODE :

X AT TIME N-1
AT TIME N
X AT TIME Nt1

;FPU REGISTER ASSIGNMENT:
;RFO - SCRATCH PAD
;RF7 - H

HERE1 :

; EVALUATE
9

JMPF OPER,HEREl ;WAIT FOR OPERANDS

THE DERIVATIVE AT N.
MACRO RFO=FUNCT(T ,XPN , . . . , ZPN)

,
LOAD FPU RES TEMP,F

9

;VALUE TO

9

STORE IOP , TEMP

STORE FPU INST RFO,RF7,/-/-
STORE FPU INST -/P*Q/-
STORE FPU INST RF0,2,/-/RFO
STORE FPU INST -/P*Q/-
STORE FPU INST RFO , ,R/ -/RFO
STORE FPU OP XCN-1,
NEW PREDICTED DERIVATIVE.
STORE FPU INST -/P+T/-
STORE FPU INST -/-/F
LOAD FPU RES XPN+l ,F

102

;SEND Fp(n) TO CORRECTOR

; DERIVnH

;STORE RESULT IN RFO
;[DERIV*H]*2
;STORE RESULT IN RFO
;ADD OLD CORRECTED

¶

;READ NEW PREDICTED VALUE

;SEND VALUE TO OTHER PES FOR USE IN THEIR CALCULATIONS.
STORE IOP, XPN+l

OR XPN ,XPN+l , #OO ;UPDATE Xp(n) VALUE
9

CORRECTOR PROGRAM:

EXECUTION TIME (WORST CASE): 1.16uS + function evaluation time +
communication delay.
MEMORY WORDS REQUIRED: 16 + derivative function
INPVTS: X,Y, ..., Z (STATE VARIABLES)
OUTPUTS: XCN - CORRECTED VALUE OF X AT TIME N.
PARAMETERS :
XCN-1 - CORRECTED VALUE OF X AT TIME N-1
XCN - CORRECTED VALUE OF X AT TIME N
XPN - PREDICTED VALUE OF X AT TIME N
CODE :

;FPU REGISTER ASSIGNMENT:
;RFO - SCRATCH PAD
;RF7 - H (STEP INTERVAL)
9

HERE1 :

; EVALUATE
9

9

;WAIT FOR
HERE2 :
9

JMPF OPER,HEREl ;WAIT FOR OPERANDS

THE DERIVATIVE FUNCTION WITH CORRECTED VALUES AT N-1
MACRO RFO=FUNCT(TN-l,XCN-l, ..., ZCN-1)
Fp(n) FROM THE PREDICTOR PE
JMPF FNPSTATUS,HERE2

STORE FPU OPT FPN,
STORE FPU INST RFO,RPN,/-/-
STORE FPU INST -/P+T/-
STORE FPU INST RF7,RFO,/-/RFO
STORE FPU INST -/P*Q/-
STORE FPU INST RFO,.S,/-/RFO
STORE FPU INST -/Pf:Q/-
STORE FPU INST RFO,,R/-/RFO
STORE FPU OP XCN-1,

;ADD TWO FUNCTIONS

;STORE RESULT IN RFO
; RFOAH

;RF0*.5
;PUT RESULT IN RFO
;STORE OLD CORRECTED VAL

103

STORE FPU INST -/P+T/- ;ADD OLD X TO RFO
STORE FPU INST -/-/F
LOAD FPU RES XCN,F ;READ NEW X VALUE

9

;SEND TO OTHER PES FOR USE IN NEXT CALCULATION INTERVAL
STORE IOP , XCN

OR XCN-l,XCN,#OO ;UPDATE OLD X VALUE

104

ISIGN

DESCRIPTION:
Result is sign of 52 times absolute value of J1.

Append a sign (ISIGN(Jl,J2)) when J1 and 52 are integers.

EXECUTION TIME (WORST CASE) : 20011s
MEMORY WORDS REQUIRED: 5
INPUTS: Jl,J2
OUTPUTS: N
CODE :

STORE FPU OPT Jl,J2 ;FPU PERFORMS THIS
STORE FPU INST R,,S/-/-
STORE FPU INST -/ISIGN(T)*IABS(P)/-
STORE FPU INST -/-/F
LOAD FPU RES N,F ;READ RESULT

;EXACT OPERATION.

105

LIMINT

DESCRIPTION: Limit the integrator by holding its derivative at zero
while the sign of the derivative tries to drive the integrater further
into the limited range.
changes to the proper direction.

The derivative is released as soon as its sign

EXECUTION TIME (WORST CASE) : 640nS
MEMORY WORDS REQUIRED: 16
INPUTS: Y - INTEGRATOR
OUTPUTS: YD - DERIVATIVE
PARAMETERS :
IC - INITIAL CONDITION ON Y
UL - UPPER LIMIT ON Y
LL - LOWER LIMIT ON Y
CODE :

[INSERT AT THE BEGINNING OF INTEGRATION ROUTINES 1

STORE FPU OPT uL,Y ;COMPUTE UL - Y
STORE FPU INST R,,S/-/-
STORE FPU INST -/P-T/-
STORE FPU INST -/-/F
LOAD FPU RES DIFF,F
JMPF DIFF ,OK ;IF UL-Y POS, JUMP
NO?
AND YD ,x, !loo ; CLEAR DERIVATI'V'E

STORE FPU INST R,,S/-/-
STORE FPU INST -/P-T/-
STORE FPU INST -/-/F
LOAD FPU RES DIFF,F ;READ Y - LL
JMPF DIFF , OK1 ;IF Y-LL POS, JMP
NOP
AND M , x , I10 0 ; CLEAR DERIVATIVE

OK : STORE FPU OPT Y,LL

OK1 :

106

LSW

DESCRIPTION:
as follows:

The l o g i c a l switch function, LSW(P,Jl,J2) is implemented

i f P is t r u e , then N = J1,
i f P is f a l s e , then N = 52.

EXECUTION TIME (WORST CASE) : 120nS
MEMORY WORDS REQUIRED: 3
INPUTS: P
OUTPUTS: N
PARAMETERS: J1, 52
CODE :

JMPT P, END
OR N, Jl , H O O
OR N ,J2, #OO

END:

;IF P TRUE, N=J1
;IF P FALSE, N=J2

L

107

MAX0

DESCRIPTION: Determine the maximum argument where the inputs are
integers and the output is an integer value.

EXECUTION TIME (WORST CASE): (7:':CNT + 15)*40nS
MEMORY WORDS REQUIRED: 16
INPUTS: J1, 52, 53, ... Jn
OUTPUTS: N
PARAMETERS :
CNT = NUMBER OF OPERANDS - 1.
IPA = POINTING TO BEGINNING OF STRING
(ASSUME VARIABLES ARE IN GENERAL PURPOSE REGISTERS)
CODE :

OR
AGAIN : CPLE

JMPT
MFSR
OR

JMPFDEC
MTSR

SKIP : ADD

N, IPA, 0
COND, IPA, N
COND, SKIP
COND, IPAREG
N, IPA, 0
COND , COND , !IO 1
CNT, AGAIN
IPAREG, COND

STORE FPU INST RFO,,R/-/RFO

;WAIT FOR RESULTS FROM OTHER ?E
HERE : JMPF OPER,HERE

NOP

STORE FPU OP X,N
STORE FPU INST -/MAX P,T/-
STORE FPU INST -/-/F
LOAD FPU INST Y,F
STORE IOP,Y

9

;COMPARE CURRENT VALUE
;TO CURRENT MAX.

;IF GREATER, REPLACE OLD.
;INCREMENT IPA TO POINT

;AT NEXT VALUE.

;SEND RESULT TO NEXT PE

108

MAX1

DESCRIPTION: Return the maximum argument where the inputs are floating
point values and the output is an integer value.

EXECUTION TIME (WORST CASE): (lO*CNT + 29)*40nS
INPUTS: X 1 , X 2 , X3, ... Xn
OUTPUTS: N

I PARAMETERS:
I CNT = NUMBER OF OPERANDS - 1

1 MEMORY WORDS REQUIRED: 23 I
I

I IPA = POINTS TO START OF STRING
(ASSUME ALL OPERANDS ARE IN THE GENERAL PURPOSE REGISTERS)
CODE :

I

OR Y, IPA, 0
STORE FPU OPT Y,
STORE FPU INST R,,/-/-
STORE FPU INST -/P/-
STORE FPU INST RFO,,R/-/RFO

9

AGAIN : STORE FPU OP IPA
STORE FPU INST -/MAX P,T/-
STORE FPU INST RFO,,R/-/RFO
MFSR COND, IPAREG
ADD
JMPFDEC CNT, AGAIN
MTSR IPAREG, COND

cmi , zom , ::z 1

,
STORE FPU OPT Y,

STORE FPU INST -/INT(T)/-
STORE FPU INST RFO,,R/-/RFO

. STORE FPU INST ,,R/-/-

>
;WAIT FOR RESULTS FROM OTHER PE
HERE : JMPF OPER , HERE

NOP
i

STORE FPU OP X
STORE FPU INST -/MAX P,T/-
STORE FPU INST -/-/F
LOAD FPU INST Y,F
STORE IOP,Y

9

;INITIALIZE FPU ACCUM.

;LET FPU FIND MAXIMUM

;STORE NEW MAXIMUM

;INCREMENT IPA

;CONVERT MAX TO INTEGER

;SEND RESULT TO NEXT PE

109

MINO

DESCRIPTION: Determine the minimum argument where the inputs are
integers and the output is an integer value.

EXECUTION TIME (WORST CASE): (7kCNT + 15)*40nS
MEMORY WORDS REQUIRED: 16
INPUTS: J1, 52, 53 , ... Jn
OUTPUTS: N
PARAMETERS :
CNT = NUMBER OF OPERANDS - 1.
IPA = POINTING TO BEGINNING OF STRING
(ASSUME VARIABLES ARE IN GENERAL PURPOSE REGISTERS)
CODE :

OR N, IPA, 0

JMPT COND, SKIP
MFSR COND , IPAREG
OR N, IPA, 0

JMPFDEC CNT, AGAIN
MTSR IPAREG,COND

STORE FPU INST RFO,,R/-/RFO

AGAIN : CPGE COND, IPA, N

SKIP : ADD COND , COND , I10 1

9

9

;WAIT FOR RESULTS FROM OTHER PE
HERE : JMPF OPER,HERE

NOP

STORE FPU OP X,N
STORE FPU INST -/MIN P,T/ -
STORE FPU INST -/-/F
LOAD FPU INST Y,F
STORE IOP ,Y

9

;COMPARE CURRENT MIN TO
;CURRENT VALUE

;INCREMENT IPA TO POINT

;TO NEXT VALUE

;SEND RESULT TO NEXT PE

MIN 1

DESCRIPTION: Return t'he minimum argument where the inputs are floating
point values and the output is an integer value.

EXECUTION TIME (WORST CASE): (10*CNT + 29)*40nS
MEMORY WORDS REQUIRED: 23
INPUTS: X1, X2, X3, ... Xn
OUTPUTS: N
PARAMETERS :
CNT = NUMBER OF OPERANDS - 1
IPA = POINTS TO START OF STRING
(ASSUME ALL OPERANDS ARE IN THE GENERAL PUR
CODE :

E E STERS)

OR Y, IPA, 0 ;INITIALIZE FPU ACCUM.
STORE FPU OPT Y,
STORE FPU INST R,,/-/-
STORE FPU INST -/P/-
STORE FPU INST RFO,,R/-/RFO

9

AGAIN : STORE FPU OP IPA ;LET FPU FIND MINIMUM
STORE FPU INST -/MIN P,T/-
STORE FPU INST RFO, ,R/-/RFO
MFSR COND , IPAREG
W Y A nn
JMPFDEC CNT, AGAIN
MTSR IPAREG, COND ;POINT IPA TO NEXT VALUE

STORE FPU OPT Y, ;CONVERT MIN TO INTEGER.
STORE FPU INST , ,R/ - / -
STORE FPU INST -/INT(T)/-
STORE FPU INST RFO,,R/-/RFO

;STORE NEW MINIMUM

corn 2 COND , /IO 1

9

;WAIT FOR RESULTS FROM OTHER PE
HERE : JMPF OPER, HERE

NOP
STORE FPU OP X
STORE FPU INST -/MIN P,T/-
STORE FPU INST -/-/F
LOAD FPU INST Y,F
STORE IOP ,Y ;SEND RESULT TO NEXT PE

111

I MOD

112

MODINT I

DESCRIPTION:
mode.

Provides an integration function that has a HOLD and RESET

INPUTS: YD - DERIVATIVE
OUTPUTS: Y - INTEGRATOR
PARAMETERS :
IC - INITIAL CONDITION ON Y
L1, L2 - LOGICAL VARIABLES DENOTING THE MODE AS SHOWN BELOW:

CODE :

XOR TEST,Ll,L2
JMPT TEST,OPERATE
NOP

JMPT L1 ,RESET
NOP

9

9

;MUST BE HOLD, SO SKIP INTEGRATION
JMP END
NOP

9

RESET : OR Y, IC, ijoo
JMP END
NOP

Y

OPERATE: MACRO INTEG(Y, IC)

END:
9

;IF L1=L2, OPERATE

;IF L1 TRUE, RESET

;RESET FUNCTION TO I.C.

;INSERT INTEGRATION

116

RAMP

DESCRIPTION:
given by the function:

Generates a unity ramp function starting after time TZ and

Y = O T<TZ,
Y = T-TZ T>TZ.

EXECUTION TIME (WORST CASE): 400nS
MEMORY WORDS REQUIRED: 10
INPUTS: NONE
OUTPUTS: Y
CODE :

STORE FPU OPT T,TZ
STORE FPU INST R,,S/-/-
STORE FPU INST -/COMPARE P,T/-
STORE FPU INST -/-/F
LOAD FPU RES COMP,FLAG ;READ FPU FLAGS
AND COMP,COMP,08H ;LOOK AT < FLAG
CPEQ COMP,COMP,08H
JMPT COMP , END ;IF T<TZ QUIT + CLR
I-.- A h m v,v,nn

;NOW, MAKE Y = T-TZ

END:
LOAD FPU RES Y,F ;READ DIFFERENCE

117

RSW

DESCRIPTION: The real switch function, LSW(P,Xl,X2) is implemented as
follows :

if P is true, then Y = X 1 ,
if P is false, then Y = X 2 .

EXECUTION TIME (WORST CASE): 120nS
MEMORY WORDS REQUIRED: 3
INPUTS: P
OUTPUTS: Y
PARAMETERS: X 1 , X 2
CODE :

JMPT P, END
OR Y ,x1,1/00
OR Y,X2,1 /00

END:

;IF P TRUE, Y=X1
;IF P FALSE, Y=X2

RTP

118

DESCRIPTION:
complex variable in polar form.

Converts a complex variable in rectangular from to a

EXECUTION TIME (WORST CASE): 14.12uS
MEMORY WORDS REQUIRED: 164
INPUTS: X,Y
OUTPUTS: MAG, ANG

STORE FPU OPT X,
STORE FPU INST R,R,/-/-
STORE FPU INST -/P*Q/-
STORE FPU INST R,R,/-/RFO
STORE FPU OP Y
STORE FPU INST -/P*Q/-
STORE FPU INST RFO,,RFl/-/RF1 ;PUT Y SQUARED IN RF1
STORE FPU INST -/P+T/-
STORE FPU INST -/-/RF2 ;X*X + Y*Y IN RF2
MACRO P=syKl (KJ! L /

LOAD FPU RES MAG,F ;READ MAGNITUDE VALUE

MACRO RFO=FDIV(Y,X)

;PUT X SQUARED IN RFO

- - - - / m n q \

MACRO F=ATAN(RFO)

LOAD FPU RES ANG,F ;READ ANGLE VALUE

119

1 SIGN

DESCRIPTION:
absolute value of X1.

Append a sign where the result is the sign of X2 times the

EXECUTION TIME (WORST CASE): 200nS
MEMORY WORDS REQUIRED: 5
INPUTS: Xl,X2
OUTPUTS: Y
CODE :

STORE FPU OPT Xl,X2
STORE FPU INST R,,S/-/-
STORE FPU INST -/SIGN(T)*ABS(P)/-
STORE FPU INST -/-/F
LOAD FPU RES Y,F ;READ THE ANSWER

;THE FPU PERFORMS THIS OPER.

SIN

120

DESCRIPTION:
radians. Result will be between -1.0 and 1.0.

Returns the sine of a real argument which must be in

EXECUTION TIME (WORST CASE) : 1 28uS
MEMORY WORDS REQUIRED: 32
INPUTS: X
OUTPUTS: Y
CODE :

;IMPLEMENT THE FOLLOWING SERIES:
;SIN(X)=X(l+Y(Al+Y(A2+Y(A3+Y(A4+Y(A5+Y(A6))))))), WHERE Y = Xf:X.
9

STORE FPU OPT X,
STORE FPU INST R,,/-/-
STORE FPU INST -/P/-
STORE FPU INST RFO,RFO,/-/RFO ;X IN RFO
STORE FPU INST -/P*Q/-
STORE FPU INST RFl,S,R/-/RF1 ;X SQUARED IN RF1
STORE FPU OP A5,A6
STORE FPU INST -/T+P"Qj-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2;ACCUMULATE IN RF2
STORE FPU OP A4,
STORE FPU INST -/TtP*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RF1, RF2, R/ - /RF2
STORE FPU OP A3
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A2
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A 1
STORE FPU INST -/T+PfcQ/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,1/-/RF2
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFO,RF2,/-/RF2
STORE FPU INST -/Pf:Q/-
STORE FPU INST -/-/F
LOAD FPU RES Y,F ;READ ANSWER

;ACCUM f: X

121

SQRT

DESCRIPTION:
This routine is represented by:

Computes the square root of X with a recursive routine.

X(I+l) = 0.5*[X(I) + B/X(I)], where X is an approximation of B's square
root.

EXECUTION TIME (WORST CASE): 9.811s
MEMORY WORDS REQUIRED: 31
INPUTS: B
OUTPUTS: Y
PARAMETERS :
COUNT - NUMBER OF DESIRED ITERATIONS
CODE :

;GET SEED FOR 1st ITERATION
STORE TABLE, B ; PLACE BE 01 HARDWARE LOOK-
LOAD X , TABLE ;RETRIEVE SEED VALUE

9
7- - - rnmm T'T"PDhTTnN ;COMPUL'L P L ~ ~ L L L U ~ L L - - - .

STORE FPU OPT X,B ;LOAD FPU
STORE FPU INST R,,/-/-
STORE FPU INST S,,/P/-
STORE FPU INST -/P/RFO
STORE FPU INST -/-/RF1

;STORE X IN RFO, B IN RF1

9

AGAIN : MACRO RF2=RECIP(X) ;COMPUTE RECIPROCAL OF X
9

STORE FPU INST RF2,RFl,RFO/-/-
STORE FPU INST -/P*Q+T/-
STORE FPU INST -/P*Q+T/-
STORE FPU INST RF0,0.5,/-/RFO ;STORE IN RFO
STORE FPU INST -/P*Q/-
JMPFDEC COUNT,AGAIN
STORE FPU INST -/-/RFO ;STORE NEW X IN RFO

;IF NOT ALL REQUIRED ITERATIONS HAVE BEEN DONE, DO ANOTHER.
;APPROXIMATELY 7 ;ITERATIONS WILL BE REQUIRED FOR SINGLE
;PRECISION VALUES.

;CALCULATE [X + B/X]
; CALCULATE 0.5* [X+B/X 1

9

JP T .B E

I 122

I STEP

DESCRIPTION: The STEP function outputs a zero if t < tz, and outputs an
one if t > tz.

EXECUTION TIME (WORST CASE): 400nS
MEMORY WORDS REQUIRED: 10
INPUTS: NONE
OUTPUTS: Y
PARAMETERS: TZ - STARTING TIME
CODE :

STORE FPU OPT T,TZ
STORE FPU INST R,,S/-/-
STORE FPU INST -/COMPARE P,T/-
STORE FPU INST -/-/F
LOAD FPU RES COMP,FLAG ;READ FPU FLAGS
AND COMP,COMP,08H ;LOOK AT < FLAG
CPEQ COMP,COMP,08H
JMPF COMP , END ;IF T>TZ TURN ON
OR Y , ONE, I100 ;TURN OUTPUT ON
AND Y,Y,OO ;MAKE OUTPUT OFF

END:

123

TAN

DESCRIPTION: Returns the tangent of an angle represented i n radians.

EXECUTION TIME (WORST CASE): 1 . 2 8 ~ ~
MEMORY WORDS REQUIRED: 32
INPUTS: X
OUTPUTS: Y
CODE :

;IMPLEMENT THE FOLLOWING SERIES:
; TAN(X)=X(1+Y (Al+Y (A2+Y (A3+Y(A4+Y (A5+Y(A6))))))) , WHERE Y = X*X.
9

STORE FPU OPT X,
STORE FPU INST R,,/-/-
STORE FPU INST -/P/-
STORE FPU INST RFO,RFO,/-/RFO ;X IN RFO
STORE FPU INST -/P*Q/-
STORE FPU INST RFl,S,R/-/RF1 ;X SQUARED IN RF1
STORE FPU OP A5,A6
--nn- n icv - / r + p n ~ j - SlVlU!, c r u I A V U I , -
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2;ACCULATE IN RF2
STORE FPU OP A 4 ,
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A3
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A2
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,R/-/RF2
STORE FPU OP A1
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFl,RF2,1/-/RF2
STORE FPU INST -/T+P*Q/-
STORE FPU INST -/T+P*Q/-
STORE FPU INST RFO,RF2,/-/RF2
STORE FPU INST -/PAQ/-
STORE FPU INST -/-/F
LOAD FPU RES Y,F ;READ ANSWER

;ACCUM :‘c X

124

UNIF

DESCRIPTION:
is a random var iab le d i s t r ibuted between L and U.

Used to generate a uniform random number sequence where Y ,

EXECUTION TIME (WORST CASE): 1.16uS
MEMORY WORDS REQUIRED: 17
INPUTS: NONE
OUTPUTS: Y

I PARAMETERS :
L - LOWER LIMIT

I U - UPPER LIMIT
I CODE :

; Y = L + (U-L)JcN WHERE N IS A RANDOM "MBER FROM 0 TO 1.
I

LOAD N , RDNPTR
ADD

3iPF con!, SKIP
NOP
OR RDNPTR, START, 1\00

STORE FPU INST R,,S/-/-
STORE FPU INST -/P-T/-
STORE FPU INST R,RFO,/-/RFO
STORE FPU OP N
STORE FPU INST -/P*Q/-
STORE FPU INST R,,RFO/-/RFO
STORE FPU OP L,
STORE FPU INST -/P+T/-
STORE FPU INST -/-/F
LOAD FPU RES Y,F

1

, RDNPTR , RDNPTR , HO 1
I
I CPEQ COND,RDNPTR,MAXPTR

SKIP : STORE FPU OPT U,L

;READ NEW RANDOM NUMBER
;POINT TO NEW R.N.
;SEE IF AT END

;RESET OUTPUT POINTER
;COMPUTE U-L

;STORE U-L IN RFO
;STORE RANDOM NUMBER
;COMPUTE (U-L)fCN

;COMPUTE L + (U-L)*N
;READ RESULT

125

ZHOLD

DESCRIPTION:
manner :

Implements a zero order hold function in the following

y = x if p is true,
y = hold if p is false.

EXECUTION TIME (WORST CASE): 120nS
MEMORY WORDS REQUIRED: 3
INPUTS: X,P
OUTPUTS: Y
CODE :

JMPF p , m
NOP
OR Y ,x, 00

END:

;IF P FALSE, QUIT

; M A K E Y = X

126

FDIV (MACRO ROUTINE)

DESCRIPTION: Performs a single precision floating point division
routine for 32 bit operations using a Newton-Raphson method which
computes the reciprocal of the divisor and then multiplies it times the
dividend to determine the quotient.
the reciprocal of a value as well as performing floating point division.

This routine can be used to find

EXECUTION TIME (WORST CASE): (7*ITERATIONS + 10)*40nS
EX: 1.24uS with 3 iterations

INPUTS: DIVISOR, DIVIDEND
OUTPUTS : QUOTIENT(RF3), RECIPROCAL(RF0)
CODE :

I MEMORY WORDS REQUIRED: 17

STORE FPU OPT DIVISOR
STORE FPU INST R,,/-/-
STORE FPU INST -/P/-
STORE FPU INST RFl,,/-/RF1
STORE FPU INST -/RECIP-SEED/-
STORE FPU INST RFO,RF1,2/-/RFO

;PUT B IN RF1

;SEED IN RFO
;READY FOR FIRST ITEWI'IUN .---*- nnn Pun ~ ~ ~ T D R n r A T i u , U A A ..- d--L DIVISION
;EVALUATE Xi+l = Xik(2-b"Xi)

AGAIN: STORE FPU INST -/T-P*Q/-
STORE FPU INST -IT-P*Q/-

STORE FPU INST RFO,RF2,/-/-
STORE FPU INST -/PnQ/-
JMPFDEC COUNT,AGAIN ;DO REQUIRED ITERATIONS, 3

9

STORE FPU INST -/-/RF2 ; a 2 = 2-B"X(i)

' .
STORE FPU INST RFO,RF1,2/-/RFO

STORE FPU INST R,RFO,/-/-
STORE FPU OP DIVIDEND ;MULTIPLY DIVIDEND BY

STORE FPU INST -/PnQ/ -
STORE FPU INST -/-/RF3 ;QUOTIENT IN RF3 AND F

;I/DIVISOR

127

IDIV (MACRO ROUTINE)

DESCRIPTION:
following parameters:

Performs a signed 64 by 32 bit INTEGER division with the

EXECUTION TIME (WORST CASE): 2.211s
MEMORY WORDS REQUIRED: 55
INPUTS :
DIVMSW - MSW OF DIVIDEND,
DIVLSW - LSW OF DIVIDEND,
DIVISOR - 32 BIT DIVISOR
OUTPUTS :
QUOTIENT - 32 BIT QUOTIENT,
N - 32 BIT REMAINDER
9

SKIP1 :

SKIP2 :

ASNE
JMPF
CONST
CPEQ
SUBR
SUBRC
JMPF
NOP
CPEQ
SUBR
MTSR
DIVO
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
D IV

DIVZERO,DIVISOR,OO
DIVMSW,SKIPl
FLAGIT,0000
FLAGIT,FLAGIT,OO
DIVLSW,DIVLSW,OO
DIVMSW,DIVMSW,OO
DIVISOR,SKIP2

FLAGIT,FLAGIT,OO
DIVISOR,DIVISOR,
0, DITJLSW
N , DIVMSW
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR

;CHK DIVIDE BY ZERO
;JMP IF POSITIVE
;SET FLAG 0 FOR POS.
;MAKE TRUE FOR NEG.
;NEGATE L.0.WORD
;NEGATE H.O.WORD
;,?P IF DIVISOR POS .
;TOGGLE FLAG
;NEGATE DIVISOR
;SET Q TO DIVIDEND LOW
;MAKE SHIFT AREA FOR DIV.
;PERFORM 32 STROKE DIVISION.

,

SKIP3 :

POS :

DIV
DIV
DIV
DIV

DIVL
DIVREM
MFSR
CPLT
JMPF
CPEQ
CPEQ
CPNEQ
JMPF
ASEQ
SUBR
SUBR

N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR
N,N,DIVISOR

N,N,DIVISOR ;LAST STEP OF DIVIDE
N,N,DIVISOR ;REMAINDER INTO N
QUOTIENT, Q ; LOAD QUOTIENT
OVRFLW, QUOTIENT, 00 ; IF NEG, SET FLAG
OVRFLW,SKIP3
SETMSB,SETMSB,SETMSB;SETMSB=8OOOOOOOH
OVRFLW,SETMSB,QUOTIENT
OVRFLW,OVRFLW,FLAGIT
POS , FLAGIT ;NO CORRECTION, JMP
DIVOVRFW,OVRFLW,OO ;IF SET OVERFLOW OCCURRED
QUOTIENT,QUOTIENT,OO;NEGATE QUOTIENT
N,N,OO ;NEGATE REMAINDER

I LIST OF REFERENCES

Beyer, W.H. 1984. CRC standard mathematical tables, 27th ed. Boca Raton:
CRC Press.

I Briggs, F.A., and K. Hwang. 1984. Computer architecture and parallel
processing. 1984. New York:McGraw-Hill. I

I
Cushman, Robert H. 1987. EDN's 14th annual uP/uC chip directory. E. 26

November. 101-187.

Gimarc, C.E. 1987. A survey of RISC processors and computers of the mid-
1980s. Computer. September. 59-70.

Hannaver, G. 1986. Benchmarks for evaluation of simulation
multiprocessors. West Long Branch: Electronic Associates,Inc.

Howe, C.D. 1987. How to program parallel processors. IEEE S p e e t r * x ~ .

I September. 36-41.

Hmter, C.B. 1987. Introduction to the Clipper architecture. IEEE Micro.
August. 6-27.

Johnson, Mike. 1987. Am29000 user's manual. Sunnyvale: Advanced Micro
Devices.

. 1987. System considerations in the design of the Am29000.
-- IEEE Micro. August. 28-41.

Liniger, Werner, and Willard Miranker. 1966. Parallel methods for the
numerical integration of ordinary differential equations.
Mathematical Computing. vol. 21. 303-320.

Milutinovic, V.M., ed. 1988. Computer architecture concepts and systems.
New York: North-Holland.

Mitchell and Gauthier, Associates, pub. 1986. The advanced continuous
simulation language (ACSL) reference manual. Concord: Mitchell and
Gauthier, Associates.

Ralston, Anthony, and Herbert S. Wilf. 1965. Mathematical methods for
digital computers. John Wiley & Sons, Inc.

Texas Instruments, Inc. 1985. SN74AS888 SN74AS890 bit-slice processor
user's guide. Dallas: Texas Instruments, Inc.

TOY, Wing, and Benjamin Zee. 1986. Computer hardware/software
architecture. New Jersey: Prentice-Hall.

129

